- 高中数学学习方法总结 推荐度:
- 相关推荐
高中数学学习方法总结
总结是对过去一定时期的工作、学习或思想情况进行回顾、分析,并做出客观评价的书面材料,它可以促使我们思考,快快来写一份总结吧。我们该怎么去写总结呢?下面是小编帮大家整理的高中数学学习方法总结,希望能够帮助到大家。
高中的学习生活其实不只是要努力,正确的学习方法在学习生活中起着很大的作用。现在我就高中的学习方法给你做些介绍啊,希望对你的学习生活有所作用!我知道你数学不是很好,所以呢,我着重数学。
你们女生老是说高中数学难,其实是那么回事吗?在高考中,数学只有二十一题,选择和填空有十五题,然后再六个大题。所以在高中你只有学会这二十一题就行。
在试卷的第一题你会碰到虚数的有关内容,虚数无非是虚数有理化,实部和虚部,注意实部和虚部都是数哦!之所以这个虚放在第一题就是要你拿到那个五分,一定不要客气哦!在试卷的第二题你将会看到简单逻辑连接词的有关试题,其实这一部分的题目还是比较简单的了,只要掌握了课本上的就足够了。关于前面的两题我就不想多讲了。还有集合内容我也觉得不是高考的重点。至于统计我也就不详细的说了,我所讲的是三角函数与解三角形,函数与导数,立体几何,解析几何,数列,向量。
一:三角函数与解三角形
这个知识点考的还是比较多的,大概有17分。
1、你需要掌握正余弦,正切的图像,及其的有关图像变化。在高考中的图像题可能就是
这方面的。关于图像的上下平移,左右平移,图像的性质。三角函数是个周期函数,这在学习的过程中可能要花不少时间,其实当你不清楚的时候就画画图像,在图像上找到你所要的东西,当然你也要学会求它的周期,这些你都要熟练掌握。其实三角函数的图像无非是关于图形的变换,只要有耐心和一定的基本功,这部分的题目解决来不是什么难事!
2、三角函数的诱导公式,正余弦的和差展开式,二倍角公式,半角公式。这一部分内容
除了必要的练习还要有效的记忆。其中诱导公式是比较多的,你可以先集中记忆,然后在练习中加以巩固,达到熟练的目的。注意,你要找到这些公式的异同点找到自己的方法记忆。比如在做题的时候你看到了平方那么你的第一感觉就是看看能不能用半角公式,从半角公式形式上看它比较适合降次。多找找这样的特点有助于你记忆和应用。
3、快速有效的掌握AB形式。在高考中,这样的题型有着很大的分量。你要做的就是在
什么时候要用这种形式和又好又快的解决这类问题。这种形式我们不难发现它必须是在同角的时候才可以用,至于熟练运用就要靠你平时的努力了!
4、解三角形。这一块要熟练得掌握正余弦定理。无论是正弦还是余弦都必须知道三角形
的三个条件,注意有时我们用正弦的时候发现有两个值,那么一定要注意是不是要舍去一个啊,要经常用大角对大边的定理进行检验。
二:函数与导数
1、基本初等函数。包括一次,二次,指数,对数等函数。对于二次函数的题目我们要注
意的是四要素:开口方向,对称轴,截距,根的分布。在习题中你要时常考虑这四个因素,要寻找到题目中的隐藏条件,大多的题目至少有一个隐藏条件,找到以后你就可以化繁为简。还有,不要怕分类讨论,其实分类讨论只要部遗漏部重复就行,不用太在意那个,难的分类讨论并不是每个人都会。指数函数你要知道它的图像和性质,比如a的范围啊,单调性,值域啊。对数函数和指数函数有共同点,只要掌握了两种图像你就可以掌握他们了。还有,对于基本初等函数的基本运算你还是要多加练习的,比如指数函数和对数函数的几个运算公式你一定要熟练掌握,这是你解决复杂题目的基础。
2、导数的运用。导函数和原函数要能够区别,首先你要明确导函数是用来干嘛的,导函
数就是用来研究原函数的单调性的一种方式,不能将二者混淆。大部分的导数运用最终都会转化到二次函数上去,所以在有空的时候对二次函数要加强练习。
三:立体几何。
立体几何中最重要的就是线、面的关系。有线面的平行、垂直关系,面面的平行、垂直关系。通常在高考中考察的立体几何就是要证明线面的位置关系以及面面的位置关系。我们在解决此类的题目的时候要数练掌握定理和性质,对于定理我们比较熟悉,而对于性质的运用不是很好,所以我们要加强性质的运用。在解决较复杂的立体几何题目中你多画辅助线,也许辅助线会给你许多的益处,为你的解题提供方便之门。
四:解析几何。
解析几何在高考中的难度比较大,所以只要掌握常规方法就足够了。
1、直线与圆的位置关系,圆与圆的位置关系。这里运用的最多的就是点到直线的距离来判断他们的位置关系。
2、椭圆、双曲线、抛物线。椭圆在高考中出现的频率还是比较高的,形式以直线与椭圆
的位置为主,所以对于常规的圆锥曲线的题目你要掌握常规的解法,比如点差法和代入法啊,这些常规的方法一定要掌握。双曲线和抛物线在前面的客观题还是考的比较多。主要还是离心率考察的比较多,这就要从已知条件出发,将所给的条件划到关于ac上最常见的就是将离心率平方,找到ac的关系。
五:数列。
等差数列的通项公式、求和公式,等比数列的通项公式、求和公式要熟练运用。数列类的题目大部分要你先求通项,然后再求和。
1、你要对求通项和求和的进行分类,找到其中的方法,比如求通项的时候你就要想到利
用和式进行做差,这样就能够解决。当题目给的是递推公式的时候,那么你就要进行构造新的数列,这个新数列不是等比就是等差。在有的题目已经给出了新的构造的数列据比较简单了,只要凑下就好了。
2、在求和的时候你就要会公式发,错位相减法,倒序相加,列项相消法,分组求和等方法。
不过你要分清他们的使用范围,比如错位相减法就是解决等差数列和等比数列的组合的复杂的数列。因为求和的方法不过只有这么多,实在不行的话就一个个的试。
六:向量。
向量在高考中的分量不是很重,所以你只要掌握向量的基本运算。向量的基本运算方法分为几何法和坐标法,几何法就是利用三角形定理和平行四边形定理,这些在选择填空题中常见,另外,充分的运用三点共线原理进行解决问题很重要。坐标法运用的比较多,对于向量的坐标法的基本运算你也要好好的掌握,在几何法解决有点苦难的时候你就要想到坐标法,建系,设点坐标。
【高中数学学习方法总结】相关文章:
高中数学学习方法总结05-02
高中数学学习方法大全05-10
清华学霸分享:高中数学详细学习方法04-29
学生学习方法总结11-11
英语学习方法总结12-19
自己学习方法的总结04-30
高中学习方法总结12-21
初中学习方法总结05-02
英语学习方法总结范例05-01