中考数学复习资料

时间:2022-11-04 14:22:26 中考复习 我要投稿
  • 相关推荐

中考数学复习资料

中考数学复习资料1

  一、三角函数关系

中考数学复习资料

  倒数关系

  tanα·cotα=1

  sinα·cscα=1

  cosα·secα=1

  商的关系

  sinα/cosα=tanα=secα/cscα

  cosα/sinα=cotα=cscα/secα

  平方关系

  sin^2(α)+cos^2(α)=1

  1+tan^2(α)=sec^2(α)

  1+cot^2(α)=csc^2(α)

  同角三角函数关系六角形记忆法

  构造以"上弦、中切、下割;左正、右余、中间1"的正六边形为模型。

  倒数关系

  对角线上两个函数互为倒数;

  商数关系

  六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。(主要是两条虚线两端的三角函数值的乘积,下面4个也存在这种关系。)。由此,可得商数关系式。

  平方关系

  在带有阴影线的三角形中,上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方。

  二、锐角三角函数定义

  锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的锐角三角函数。

  正弦(sin)等于对边比斜边;sinA=a/c

  余弦(cos)等于邻边比斜边;cosA=b/c

  正切(tan)等于对边比邻边;tanA=a/b

  余切(cot)等于邻边比对边;cotA=b/a

  正割(sec)等于斜边比邻边;secA=c/b

  余割(csc)等于斜边比对边。cscA=c/a

  互余角的三角函数间的关系

  sin(90°—α)=cosα,cos(90°—α)=sinα,

  tan(90°—α)=cotα,cot(90°—α)=tanα。

  平方关系:

  sin^2(α)+cos^2(α)=1

  tan^2(α)+1=sec^2(α)

  cot^2(α)+1=csc^2(α)

  积的关系:

  sinα=tanα·cosα

  cosα=cotα·sinα

  tanα=sinα·secα

  cotα=cosα·cscα

  secα=tanα·cscα

  cscα=secα·cotα

  倒数关系:

  tanα·cotα=1

  sinα·cscα=1

  cosα·secα=1

  三、圆的定理

  1、不在同一直线上的三点确定一个圆。

  2、垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧

  推论1

  ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧

  ②弦的垂直平分线经过圆心,并且平分弦所对的两条弧

  ③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧

  推论2圆的两条平行弦所夹的弧相等

  3、圆是以圆心为对称中心的中心对称图形

  4、圆是定点的距离等于定长的点的集合

  5、圆的内部可以看作是圆心的距离小于半径的点的集合

  6、圆的外部可以看作是圆心的距离大于半径的点的集合

  7、同圆或等圆的`半径相等

  8、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆

  9、定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等

  10、推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等

中考数学复习资料2

  1.位置:所在或所占的地方,有上下、前后、左右之分。

  上:位置方位名词,例:汽车在马路的上面。

  下:位置方位名词,例:船在桥的下面。

  前:位置方位名词,例:张三在李四的前排,那么可以说张三在李四的'前面。

  后:位置方位名词,例:李四在张三的后排,那么可以说李四在张三的后面。

  2.退位减:减法运算中必须向高位借位的减法运算。

  20以内的数字之间的退位减法,例:12-9=3.

  3.图形的拼组(作风车):

  4.数一数:#FormatImgID_1#

  5.读数:24读作“二十四”;169读作“一百六十九”。

  6.比较数的大小:先比较高数位的数学,再按照数位的高低依次比较。

  例:39和145比较大小,39百位数字为0,145百位数字为1,0小于1,所以39小于145

  7.100以内数的认识:100读作“一百”,等于10个10相加;99读作“九十九”,等于100减去1.

中考数学复习资料3

  中考数学复习资料之全等三角形的公式

  一般来说考试中出现的线段和角相等需要证明全等,我们可以用全等的相应知识点来解题。

  例1、已知CD⊥AB于D,BE⊥AC于E,△ABE≌△ACD,∠C= 20°,AB=10,AD= 4, G为AB延长线上一点.求∠EBG的度数和CE的长.

  分析:

  (1)图中可分解出四组基本图形:有公共角的Rt△ACD和Rt△ABE;△ABE≌△ACD,△ABE的外角∠EBG或∠ABE的邻补角∠EBG.

  (2)利用全等三角形的对应角相等性质及外角或邻补角的知识,求得∠EBG等于160°.

  (3)利用全等三角形对应边相等的性质及等量减等量差相等的关系可得:

  CE=CA-AE=BA-AD=6.

  解:∵△ABE≌△ACD

  ∠C= 20°(已知)

  ∴∠ABE=∠C

  =20°(全等三角形的对应角相等)

  ∴∠EBG=180°-∠ABE

  =160°(邻补角的意义)

  ∵△ABE≌△ACD(已知)

  ∴AC=AB(全等三角形对应边相等)

  AE=AD(全等三角形对应边相等)a

  ∴CE=CA-AE

  =BA-AD

  =6(等式性质)

  分析完毕以后要注意书写格式,在全等三角形中,如果格式不写好那么就容易出现看漏的现象。

  初中数学正方形定理公式

  关于正方形定理公式的内容精讲知识,希望同学们很好的掌握下面的内容。

  正方形定理公式

  正方形的特征:

  ①正方形的四边相等;

  ②正方形的四个角都是直角;

  ③正方形的两条对角线相等,且互相垂直平分,每一条对角线平分一组对角;

  正方形的判定:

  ①有一个角是直角的菱形是正方形;

  ②有一组邻边相等的矩形是正方形。

  希望上面对正方形定理公式知识的讲解学习,同学们都能很好的掌握,相信同学们会取得很好的成绩的哦。

  初中数学平行四边形定理公式

  同学们认真学习,下面是老师对数学中平行四边形定理公式的内容讲解。

  平行四边形

  平行四边形的性质:

  ①平行四边形的对边相等;

  ②平行四边形的对角相等;

  ③平行四边形的对角线互相平分;

  平行四边形的判定:

  ①两组对角分别相等的四边形是平行四边形;

  ②两组对边分别相等的四边形是平行四边形;

  ③对角线互相平分的四边形是平行四边形;

  ④一组对边平行且相等的'四边形是平行四边形。

  上面对数学中平行四边形定理公式知识的讲解学习,同学们都能很好的掌握了吧,相信同学们会从中学习的更好的哦。

  初中数学直角三角形定理公式

  下面是对直角三角形定理公式的内容讲解,希望给同学们的学习很好的帮助。

  直角三角形的性质:

  ①直角三角形的两个锐角互为余角;

  ②直角三角形斜边上的中线等于斜边的一半;

  ③直角三角形的两直角边的平方和等于斜边的平方(勾股定理);

  ④直角三角形中30度

  角所对的直角边等于斜边的一半;

  直角三角形的判定:

  ①有两个角互余的三角形是直角三角形;

  ②如果三角形的三边长a、b 、c有下面关系a^2+b^2=c^2

  ,那么这个三角形是直角三角形(勾股定理的逆定理)。

  以上对数学直角三角形定理公式的内容讲解学习,同学们都能很好的掌握了吧,希望同学们都能考试成功。

  初中数学等腰三角形的性质定理公式

  下面是对等腰三角形的性质定理公式的内容学习,希望同学们认真看看。

  等腰三角形的性质:

  ①等腰三角形的两个底角相等;

  ②等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(三线合一)

  上面对等腰三角形的性质定理公式的内容讲解学习,同学们都能很好的掌握了吧,希望同学们在考试中取得很好的成绩。

  初中数学三角形定理公式

  对于三角形定理公式的学习,我们做下面的内容讲解学习哦。

  三角形

  三角形的三边关系定理及推论:三角形的两边之和大于第三边,两边之差小于第三边;

  三角形的内角和定理:三角形的三个内角的和等于180度;

  三角形的外角和定理:三角形的一个外角等于和它不相邻的两个的和;

  三角形的外角和定理推理:三角形的一个外角大于任何一个和它不相邻的内角;

  三角形的三条角平分线交于一点(内心);

  三角形的三边的垂直平分线交于一点(外心);

  三角形中位线定理:三角形两边中点的连线平行于第三边,并且等于第三边的一半;

  以上对三角形定理公式的内容讲解学习,希望同学们都能很好的掌握,并在考试中取得很好的成绩哦。

中考数学复习资料4

  中考,对初中毕业生来讲是一次相当重要的考试,对更多人来讲是一次重要的学习机会,我们只有吸取他们的经验教训,才能少走弯路,取得更大进步。另外尽管试题的难度在下降,但过去一些常见的问题依然存在,新的问题也在不断产生,因此,除了保留过去已经形成的一些好的学习方法外,还要根据当前考试的新动向,寻找一些新的方法。

  认真学习,研究教材,研究考试,把握老师教学的要求,了解老师教学中的重点和学生学习中的难点,提高自身的业务素养。另外也要根据当前教改的要求、学生的.实际,研究老师教学方法,达到提高老师教学效率的目的。

  要注重知识的发生发展过程,全面、准确的理解基本概念,切忌就事论事,然后通过大量的练习来“理解”、“掌握”概念,这种做法只能起到事倍功半的效果,不但“记不住”大量的数学概念,而且不会灵活地运用概念解决问题。

  在平时的学习例题时,要注重分析解决问题的方法,纠正不研究的学习过程,只追求结果的错误学习方法;要注重数学思想方法的渗透,废弃死记硬背的学习方式。数学思想方法是数学的灵魂,数学的精髓,它是培养学生创新意识、实践能力的源泉,因此也是中考的重点。在初中阶段要注意方程思想、函数思想、整体待换思想、化归思想、数形结合思想、分类讨论思想、换元法、配方法、待定系数法等数学思想方法,这样才能提高学生分析问题解决问题的能力。

  估计今后几年试题的难度会象今年一样,有所下降,那么另一个问题就突现在每位数学教师面前——学生的粗心问题,如何克服学生的“粗心”问题,是每位数学教师所要考虑、解决的“大问题”。对学生平时学习中反映出来的不仔细、一知半解、丢三落四等毛病,就应该严格要求,要帮助学生树立良好的学习习惯,避免不必要的失分。另外也要加强学生的运算、估算能力,适当的运算能力是中考的重点,因此在掌握基本方法的前提下,要关注运算结果的正确性,以及运算的速度;要加强学生逻辑推理能力的培养,提高几何论证的能力。

  老师教学成绩的高低,很大程度取决于“学习有困难学生”的多少,就目前中考的情况来看,只要学生愿意学习数学,中考数学过关是没有什么问题的,因此在平时的老师教学中,更要关注每位学生的“学”,要培养学生良好的学习态度,树立不怕苦的精神。对学生平时的学习,教师要注重及时反馈,及时纠正,对学生学习中的困难,教师要关心帮助他们及时解决问题。尽可能减少学习有困难学生的人数。

中考数学复习资料5

  一、课堂学习的习惯

  课堂学习是学习活动的主要阵地.课堂学习习惯主要表现为:会笔记、会比较、会质疑、会分析、会合作.

  1.会笔记 上课做笔记并不是简单地将老师的板书进行抄写,而是将学到的知识点、一些类型题的解题一般规律和技巧、常见的错误等进行整理.做笔记实际是对数学内容的浓缩提炼.要经常翻阅笔记,加强理解,巩固记忆.另外,做笔记还能使你的注意力集中,学习效率更高.

  2.会比较 在学习基础知识(如概念、定义、法则、定理等)时,要运用对比、类比、举反例等思维方式,理解它们的内涵和外延,将类似的、易混淆的基础知识加以区分.如找出“同类项”和“同类二次根式”,“正比例函数”和“一次函数”,“轴对称图形”和“中心对称图形”,“平方根”和“立方根”,“半径”和“直径”,等概念的异同点,达到合理运用的目的.

  3.会质疑 “学者要会疑”,要善于发现和寻找自己的思维误区,向老师或同学提问.积极提问是课堂学习中获得知识的重要途径,同时也要敢于向老师同学的观点、做法质疑,锻炼自己的批判性思维.学习中哪怕有一点点的问题,也要大胆提问,不能留下知识上的“死角”,否则问题就会积少成多,为后续学习设置障碍.

  4.会分析 一是要认真审题:先弄清楚题目给出的条件和要解答的问题,把一些已知条件填在图形上,并将一些关键词做好标记,达到显露已知条件,同时又挖掘隐含条件的目的.如做几何体时,将已知的相等的角、线段、面积及已知的角、线段、位置关系等在图形中做好标记,避免忘记.再如做应用题时,象“不超过”“不足”等字眼,就暗示着存在不等量关系.只有弄清楚已知条件和所要解答的问题才能有目的、有方向地解题;二是要认真思索:依据题目中题设和结论,寻找它们的内在联系,由题设探求结论,即“由因求果”,或从结论入手,根据问题的条件找到解决问题的方法,即“由果索因”,或将两种方法结合起来,需找解题方法.要注意“一题多解”、“一题多变”、“一图多用”、“一法多题”等,拓展思路,训练自己的求异思维.

  5.会合作 英国著名剧作家萧伯纳曾经说过“你给我一个苹果,我给你一个苹果,我们每人只有一个苹果;你给我一个思想,我给你一个思想,我们每人就有两个思想了”,这足以说明合作、交流的`学习方式的重要性.我们主要的学习方式是自主学习,在独立思考的基础上,要适时地和同桌交流意见.在小组学习期间,要积极发表自己的观点和见解,倾听他人的发言,并作出合理的评判,以锻炼自己的表达能力和鉴别能力.

  二、课外作业的习惯

  课外作业是数学学习活动的一个组成部分,它包括:复习、作业等.

  1.复习 及时复习当天学过的数学知识,弄清新学的内容、重点内容及难于理解和掌握的内容.首先凭大脑的追忆,想不起来再阅读课本及笔记.在最短的时间内进行复习,对知识的理解和运用的效果才能最好,相隔时间长了去复习,其效果不明显,“学而时习之”就是这个道理.同时,要坚持每天、每周、每单元、每学期进行复习,使复习层层递进、环环紧扣,这样才能在正确理解知识的基础上,熟练地运用知识.

  2.作业 会学习的同学都是当天作业当天完成,先复习,后做作业.一定要独立完成,决不能依赖别人.书写一定要整洁,逻辑一定要条理.对作业要自我检查,及时改正存在的错误。

中考数学复习资料6

  有理数

  1、整数→正整数/0/负整数

  2、分数→正分数/负分数

  数轴

  1、画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。

  2、任何一个有理数都可以用数轴上的一个点来表示。

  3、如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。

  4、数轴上两个点表示的数,右边的总比左边的大。正数大于0,负数小于0,正数大于负数。

  绝对值

  1、在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。

  2、正数的绝对值是他的本身、负数的绝对值是他的.相反数、0的绝对值是0。两个负数比较大小,绝对值大的反而小。

  有理数的运算

  加法:

  1、同号相加,取相同的符号,把绝对值相加。

  2、异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

  3、一个数与0相加不变。

  减法:

  减去一个数,等于加上这个数的相反数。

  乘法:

  1、两数相乘,同号得正,异号得负,绝对值相乘。

  2、任何数与0相乘得0。3、乘积为1的两个有理数互为倒数。

中考数学复习资料7

  中考数学复习资料

  第一章实数

  考点一、实数的概念及分类(3分)

  1、实数的分类

  正有理数

  零有限小数和无限循环小数

  实数负有理数

  正无理数

  无限不循环小数

  负无理数

  2、无理数

  在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:

  (1)开方开不尽的数,如7,2等;

  (2)有特定意义的数,如圆周率π,或化简后含有π的数,如π+8等;3

  (3)有特定结构的数,如0.1010010001?等;

  (4)某些三角函数,如sin60o等

  考点二、实数的倒数、相反数和绝对值(3分)

  1、相反数

  实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=—b,反之亦成立。

  2、绝对值

  一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。零的绝对值时它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0。正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。

  3、倒数

  如果a与b互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和-1。零没有倒数。

  考点三、平方根、算数平方根和立方根(3—10分)

  1、平方根

  如果一个数的平方等于a,那么这个数就叫做a的平方根(或二次方跟)。

  一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。

  正数a的平方根记做“?

  2、算术平方根

  正数a的正的平方根叫做a的算术平方根,记作“a”。

  正数和零的算术平方根都只有一个,零的算术平方根是零。

  a(a?0)。a”a?0

  a2?a?;注意a的双重非负性:-a(a<0)a?0

  3、立方根

  如果一个数的立方等于a,那么这个数就叫做a的立方根(或a的三次方根)。

  一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。

  注意:?a??a,这说明三次根号内的负号可以移到根号外面。

  考点四、科学记数法和近似数(3—6分)

  1、有效数字

  一个近似数四舍五入到哪一位,就说它精确到哪一位,这时,从左边第一个不是零的数字起到右边精确的数位止的所有数字,都叫做这个数的有效数字。

  2、科学记数法

  把一个数写做?a?10的形式,其中1?a?10,n是整数,这种记数法叫做科学记数法。

  考点五、实数大小的比较(3分)

  1、数轴

  规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。

  解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。

  2、实数大小比较的几种常用方法

  (1)数轴比较:在数轴上表示的两个数,右边的数总比左边的数大。

  (2)求差比较:设a、b是实数,n

  a?b?0?a?b,a?b?0?a?b,a?b?0?a?b

  (3)求商比较法:设a、b是两正实数,aaa?1?a?b;?1?a?b;?1?a?b;bbb

  (4)绝对值比较法:设a、b是两负实数,则a?b?a?b。

  (5)平方法:设a、b是两负实数,则a?b?a?b。

  考点六、实数的运算(做题的基础,分值相当大)

  1、加法交换律a?b?b?a

  2、加法结合律(a?b)?c?a?(b?c)

  3、乘法交换律ab?ba

  4、乘法结合律(ab)c?a(bc)

  5、乘法对加法的分配律a(b?c)?ab?ac

  6、实数的.运算顺序

  先算乘方,再算乘除,最后算加减,如果有括号,就先算括号里面的。

  第二章代数式

  考点一、整式的有关概念(3分)

  1、代数式

  用运算符号把数或表示数的字母连接而成的式子叫做代数式。单独的一个数或一个字母也是代数式。

  2、单项式

  只含有数字与字母的积的代数式叫做单项式。注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,如?4

  误的,应写成?2212ab,这种表示就是错3132ab。一个单项式中,所有字母的指数的和叫做这个单项式的次数。如?5a3b2c是6次单项式。3

  考点二、多项式(11分)

  1、多项式

  几个单项式的和叫做多项式。其中每个单项式叫做这个多项式的项。多项式中不含字母的项叫做常数项。多项式中次数最高的项的次数,叫做这个多项式的次数。

  单项式和多项式统称整式。

  用数值代替代数式中的字母,按照代数式指明的运算,计算出结果,叫做代数式的值。

  注意:(1)求代数式的值,一般是先将代数式化简,然后再将字母的取值代入。

  (2)求代数式的值,有时求不出其字母的值,需要利用技巧,“整体”代入。

  2、同类项

  所有字母相同,并且相同字母的指数也分别相同的项叫做同类项。几个常数项也是同类项。

  3、去括号法则

  (1)括号前是“+”,把括号和它前面的“+”号一起去掉,括号里各项都不变号。

  (2)括号前是“﹣”,把括号和它前面的“﹣”号一起去掉,括号里各项都变号。

  4、整式的运算法则

  整式的加减法:(1)去括号;(2)合并同类项。

  整式的乘法:am?an?am?n(m,n都是正整数)

  n(am)?amn(m,n都是正整数)(ab)n?anbn(n都是正整数)

  (a?b)(a?b)?a2?b2(a?b)2?a2?2ab?b2(a?b)2?a2?2ab?b2

  整式的除法:am?an?am?n(m,n都是正整数,a?0)

  注意:(1)单项式乘单项式的结果仍然是单项式。

  (2)单项式与多项式相乘,结果是一个多项式,其项数与因式中多项式的项数相同。

  (3)计算时要注意符号问题,多项式的每一项都包括它前面的符号,同时还要注意单项式的符号。

  (4)多项式与多项式相乘的展开式中,有同类项的要合并同类项。

  (5)公式中的字母可以表示数,也可以表示单项式或多项式。

  (6)a?1(a?0);a0?p?1(a?0,p为正整数)pa

  (7)多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加,单项式除以多

  项式是不能这么计算的。

  考点三、因式分解(11分)

  1、因式分解

  把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式。

  2、因式分解的常用方法

  (1)提公因式法:ab?ac?a(b?c)

  (2)运用公式法:a?b?(a?b)(a?b)a?2ab?b?(a?b)a?2ab?b?(a?b)

  (3)分组分解法:ac?ad?bc?bd?a(c?d)?b(c?d)?(a?b)(c?d)

  (4)十字相乘法:a?(p?q)a?pq?(a?p)(a?q)

  3、因式分解的一般步骤:

  (1)如果多项式的各项有公因式,那么先提取公因式。

  (2)在各项提出公因式以后或各项没有公因式的情况下,观察多项式的项数:2项式可以尝试运用公式法分解因式;3项式可以尝试运用公式法、十字相乘法分解因式;4项式及4项式以上的可以尝试分组分解法分解因式

  (3)分解因式必须分解到每一个因式都不能再分解为止。

  考点四、分式(8~10分)

  1、分式的概念

  一般地,用A、B表示两个整式,A÷B就可以表示成222222222AA的形式,如果B中含有字母,式子就叫做分式。BB

  其中,A叫做分式的分子,B叫做分式的分母。分式和整式通称为有理式。

  2、分式的性质

  (1)分式的基本性质:

  分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变。

  (2)分式的变号法则:

  分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变。

  3、分式的运算法则

  考点五、二次根式(初中数学基础,分值很大)

  1、二次根式式子a(a?0)叫做二次根式,二次根式必须满足:含有二次根号“”;被开方数a必须是非负数。

  2、最简二次根式

  若二次根式满足:被开方数的因数是整数,因式是整式;被开方数中不含能开得尽方的因数或因式,这样的二次根式叫做最简二次根式。

  化二次根式为最简二次根式的方法和步骤:

  (1)如果被开方数是分数(包括小数)或分式,先利用商的算数平方根的性质把它写成分式的形式,然后利用分母有理化进行化简。

  (2)如果被开方数是整数或整式,先将他们分解因数或因式,然后把能开得尽方的因数或因式开出来。

  3、同类二次根式

  几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式叫做同类二次根式。

  4、二次根式的性质

  5、二次根式混合运算

  二次根式的混合运算与实数中的运算顺序一样,先乘方,再乘除,最后加减,有括号的先算括号里的(或先去括号)。

  第三章方程(组)

  考点一、一元一次方程的概念(6分)

  1、方程:含有未知数的等式叫做方程。

  2、方程的解:能使方程两边相等的未知数的值叫做方程的解。

  3、等式的性质

  (1)等式的两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式。

  (2)等式的两边都乘以(或除以)同一个数(除数不能是零),所得结果仍是等式。

  4、一元一次方程

  只含有一个未知数,并且未知数的最高次数是1的整式方程叫做一元一次方程,其中方程ax?b?(0x为未知数,a?0)叫做一元一次方程的标准形式,a是未知数x的系数,b是常数项。

  考点二、一元二次方程(6分)

  1、一元二次方程

  含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。

  2、一元二次方程的一般形式

  2它的特征是:等式左边十一个关于未知数x的二次多项式,等式右边是零,其中axax2?bx?c?0(a?0),

  叫做二次项,a叫做二次项系数;bx叫做一次项,b叫做一次项系数;c叫做常数项。

  考点三、一元二次方程的解法(10分)

  1、直接开平方法

  利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。直接开平方法适用于解形如(x?a)2?b的一元二次方程。根据平方根的定义可知,x?a是b的平方根,当b?0时,x?a??b,x??a?b,当b<0时,方程没有实数根。

  2、配方法

  配方法是一种重要的数学方法,它不仅在解一元二次方程上有所应用,而且在数学的其他领域也有着广泛的应用。配方法的理论根据是完全平方公式a2?2ab?b2?(a?b)2,把公式中的a看做未知数x,并用x代替,则有x2?2bx?b2?(x?b)2。

  3、公式法

  公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。

  ?b?b2?4ac2一元二次方程ax?bx?c?0(a?0)的求根公式:x?(b?4ac?0)2a2

  4、因式分解法

  因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。

  考点四、一元二次方程根的判别式(3分)

  根的判别式

  22一元二次方程ax?bx?c?0(a?0)中,b?4ac叫做一元二次方程ax?bx?c?0(a?0)的根的判别2

  式,通常用“?”来表示,即??b?4ac

  考点五、一元二次方程根与系数的关系(3分)

  2如果方程ax?bx?c?0(a?0)的两个实数根是x1,x2,那么x1?x2??2bc,x1x2?。也就是说,对于aa

  任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商。

  考点六、分式方程(8分)

  1、分式方程

  分母里含有未知数的方程叫做分式方程。

  2、分式方程的一般方法

  解分式方程的思想是将“分式方程”转化为“整式方程”。它的一般解法是:

  (1)去分母,方程两边都乘以最简公分母

  (2)解所得的整式方程

  (3)验根:将所得的根代入最简公分母,若等于零,就是增根,应该舍去;若不等于零,就是原方程的根。

  3、分式方程的特殊解法

  换元法:

  换元法是中学数学中的一个重要的数学思想,其应用非常广泛,当分式方程具有某种特殊形式,一般的去分母不易解决时,可考虑用换元法。

  考点七、二元一次方程组(8~10分)

中考数学复习资料8

  1、正数:像小学学过的大于0的数叫做正数。

  2、负数:在正数前面加上负号“-”的数叫做负数。

  3、正数负数的判断方法:

  ⑴具体的数:看是否有负号“-”,如果有“-”就是负数,否则是正数。

  ⑵含字母的数:如-a要看a本身的符号,如a是负的,则-a是正数,如a是正的则-a是负数,如a是0则-a是0。

  4、 0的'含义:①0表示起点。②0表示没有。③0表示一种温度。④0表示编号的位数。⑤0表示精确度。⑥0表示正负数的分界。⑦0表示海拔平均高度。

  5、 具有相反意义的量;

  6、 正负数的作用:在同一问题中,用正负数表示的量具有相反的意义。

  有理数乘法法则:

  (1)两数相乘,同号为正,异号为负,并把绝对值相乘;

  (2)任何数同零相乘都得零;

  (3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.

  有理数乘法的运算律:

  (1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);

  (3)乘法的分配律:a(b+c)=ab+ac .

  有理数除法法则:

  除以一个数等于乘以这个数的倒数;注意:零不能做除数.

  有理数乘方的法则:

  (1)正数的任何次幂都是正数;

  (2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时: (-a)n=-an或(a -b)n=-(b-a)n , 当n为正偶数时: (-a)n =an 或 (a-b)n=(b-a)n .

中考数学复习资料9

  有理数、整式的加减、一元一次方程、图形的初步认识。

  (1)有理数:是初中数学的基础内容,中考试题中分值约为3-6分,多以选择题,填空题,计算题的形式出现,难易度属于简单。

  【考察内容】复数以及混合运算(期中、期末必考计算)数轴、相反数、绝对值和倒数(选择、填空)。

  (2)整式的加减:中考试题中分值约为4分,题型以选择和填空题为主,难易度属于易。

  【考察内容】

  ①整式的概念和简单的运算,主要是同类项的概念和化简求值

  ②完全平方公式,平方差公式的几何意义

  ③利用提公因式法和公式法分解因式。

  (3)一元一次方程:是初一学习重点内容,主要学习内容有(归纳、总结、延伸)应用题思维、步骤、文字题,根据已知条件求未知。中考分值约为1-3分,题型主要以选择和填空题为主,极少出现简答题,难易度为易。

  【考察内容】

  ①方程及方程解的概念

  ②根据题意列一元一次方程

  ③解一元一次方程。题型:追击、相遇、时间速度路程的关系、打折销售、利润公式。

  (4)几何:角和线段,为下册学三角形打基础

  相交线和平行线、实数、平面直角坐标系、二元一次方程组、不等式和不等式组和数据库的收集整理与描述。

  (1)相交线和平行线:相交线和平行线是历年中考中常见的考点。通常以填空,选择题形式出现。分值为3-4分,难易度为易。

  【考察内容】

  ①平行线的性质(公理)

  ②平行线的判别方法

  ③构造平行线,利用平行线的性质解决问题。

  (2)平面直角坐标系:中考试题中分值约为3-4分,题型以选择,填空为主,难易度属于易。

  【考察内容】

  ①考察平面直角坐标系内点的坐标特征

  ②函数自变量的取值范围和球函数的值

  ③考察结合图像对简单实际问题中的函数关系进行分析。

  (3)二元一次方程组:中考分值约为3-6分,题型主要以选择,解答为主,难易度为中。

  【考察内容】

  ①方程组的解法,解方程组

  ②根据题意列二元一次方程组解经济问题。

  (4)不等式和不等式组:中考试题中分值约为3-8分,选择,填空,解答题为主。

  【考察内容:】

  ①一元一次不等式(组)的解法,不等式(组)解集的数轴表示,不等式(组)的整数解等,题型以选择,填空为主。

  ②列不等式(组)解决经济问题,调配问题等,主要以解答题为主。

  ③留意不等式(组)和函数图像的结合问题。

  (5)数据库的收集整理与描述

  分值一般在6-10分,题型近几年主要以解答题出现,偶尔以选择填空出现。难易度为中。

  【考察内容】

  ①常见统计图和平均数,众数,中位数的计算分析。

  ②方差,极差的应用分析

  ③与现实生活有关的实际问题的考察热点。题目注重考查统计学的知识分析和数据处理。

  三角形、全等三角形、轴对称、整式的乘除与因式分解、分式。

  (1)三角形:是初中数学的基础,中考命题中的重点。中考试题分值约为18-24分,以填空,选择,解答题,也会出现一些证明题目。

  【考查内容】

  ①三角形的性质和概念,三角形内角和定理,三边关系,以及三角形全等的性质与判定。

  ②三角形全等融入平行四边形的证明

  ③三角形运动,折叠,旋转,拼接形成的新数学问题

  ④等腰三角形的性质与判定,面积,周长等

  ⑤直角三角形的性质,勾股定理是重点

  ⑥三角形与圆的相关位置关系

  ⑦三角形中位线的性质应用

  (2)全等三角形

  (3)轴对称:图形的轴对称是中考题的新题型,热点题型。分值一般为3-4分,题型以填空,选择,作图为主,偶尔也会出现解答题。

  【考察内容】

  ①轴对称和轴对称图形的性质判别。

  ②注意镜面对称与实际问题的解决。

  (4)整式的乘除与因式分解:中考试题中分值约为4分,题型以选择,填空为主,难易度属于易。

  【考察内容】

  ①整式的概念和简单的运算,主要是同类项的概念和化简求值

  ②完全平方公式,平方差公司的几何意义

  ③利用提公因式法和公式法分解因式。

  (5)分式:中考试题中分值约为6-8分,主要以填空,简答计算题型出现,难易度属于中。

  【考察内容】

  ①分式的概念,性质,意义

  ②分式的运算,化简求值。

  ③列分式方程解决实际问题。

  二次根式、勾股定理、四边形、一次函数和数据的分析。

  (1)二次根式

  (2)勾股定理:解直角三角形,解直角三角形的知识是近几年各地中考命题的热点之一,考察题型为选择题,填空题,应用题为主,分值一般8-12分,难易度为难。

  【考察内容】

  ①常见锐角的三角函数值的计算

  ②根据图形计算距离,高度,角度的应用题

  ③根据题中给出的信息构建图形,建立数学模型,然后用解直角三角形的知识解决问题。

  (3)四边形:初中数学中考中的重点内容之一,分值一般为10-14分,题型以选择,填空,解答证明或融合在综合题目中为主,难易度为中。

  【考察内容】

  ①多边形的内角和,外角和等问题

  ②图形的镶嵌问题

  ③平行四边形,矩形,菱形,正方形,等腰梯形的性质和判定。

  (4)一次函数:一次函数图像与性质是中考必考的内容之一。中考试题中分值约为10分左右题型多样,形式灵活,综合应用性强。甚至有存在探究题目出现。

  【考察内容】

  ①会画一次函数的图像,并掌握其性质。

  ②会根据已知条件,利用待定系数法确定一次函数的解析式。

  ③能用一次函数解决实际问题。

  ④考察一次函数与二元一次方程组,一元一次不等式的关系。

  (5)数据的分析

  二次函数、一元二次方程、旋转、圆和概率初步。

  (1)二次函数:二次函数的图像和性质是中考数学命题的热点,难点。试题难度一般为难。常见选择,填空题分值为3-5分,综合题分值为10-12分。

  【考察内容】

  ①能通过对实际问题情境的分析确定二次函数的表达式,并体会二次函数的意义。

  ②能用数形结合,归纳等熟悉思想,根据二次函数的表达式(图像)确定二次的开口方向,对称轴和顶点的坐标,并获得更多信息。

  ③综合运用方程,几何图形,函数等知识点解决问题。

  (2)一元二次方程:中考分值约为3-5分,题型主要以选择,填空为主,极少出现简答,难易度为易。

  【考察内容】

  ①方程及方程解的概念

  ②根据题意列一元一次方程

  ③解一元一次方程。

  (3)旋转:图形的平移,旋转是中考题的新题型,热点题型,在试题比重,逐年上升。分值一般为5-8分,题型以填空,选择,作图为主,偶尔也会出现解答题。

  【考察内容】

  ①中心对称和中心对称图形的性质

  ②旋转和平移的性质。

  (4)圆:圆和圆的有关性质与圆的有关计算是近几年各地中考命题的重点内容。题型以填空题,选择题和解答题为主,也有以阅读理解,条件开放,结论开放探索题作为新的题型,分值一般是6-12分,难易度为中。

  【考察内容】

  ①圆的有关性质的应用。垂径定理是重点。

  ②直线和圆,圆和圆的位置关系的判定及应用。

  ③弧长,扇形面积,圆柱,圆锥的侧面积和全面积的计算

  ④圆与相似三角形,三角函数的综合运用以及有关的开放题,探索题。

  (5)概率初步:分值一般3-6分,题型以选择,填空常见,更多以解答题目为主,难易度为中。

  【考察内容】

  ①简答事件的概率求解,图表法和数形图法

  ②利用概率解决实际,公平性问题等

  ③注意概率知识与方程相结合的综合性试题,选材贴近生活,越来越新。

  初三下册

  反比例函数、相似、锐角三角函数和投影与视图。

  (1)反比例函数:反比例函数的图像和性质是中考数学命题的重要内容,试题新颖,题型灵活多样,所占分值约为3-8分,难易度属于难。

  【考察内容】

  ①会画反比例函数的图像,掌握基本性质。

  ②能根据条件确定反比例函数的表达式。

  ③能用反比例函数解决实际问题。

  (2)相似:图形的`形似是平面几何中极为重要的内容,是中考数学中的重点考察内容。一般分值约为6-12分,题型以选择,填空,解答综合题目为主,难易度属于难。

  【考察内容】

  ①相似三角形的性质和判别方法,是重点。

  ②相似多边形的认识,黄金分割的应用。

  ③相似形与三角形,平行四边形的综合性题目是难点。

  (3)锐角三角函数

  (4)投影与视图:分值一般为3-6分,试题以填空,选择,解答的形式出现。

  【考察内容】

  ①常见几何体的三视图

  ②常见几何体的展开和折叠,展开和折叠是考试的热点,值得注意。

  ③利用相似结合平行投影和中心投影解决实际问题。

  (不同地区分值不同,可供参考)

  选择题:3分一个,共14个,总分42分。

  填空题:3分一个,共5个,总分15分。

  解答题:共7题,总分63分。

  (一)线段、角的计算与证明问题

  中考中的简答题一般是分为两到三部分的。第一部分基本上都是简单题和中档题,目的在于考查基础。第二部分第二部分往往就是开始拉分的中难题了。

  (二)列方程(组)解决应用问题

  在中考中,方程是初中数学当中最重要的部分,所以也是中考必考内容。从近年来中考来看,结合时事热点考的比较多,所以还需要考生有一些实际生活经验。

  (三)阅读理解问题

  阅读理解问题是中考中的一个亮点。阅读理解往往是先给一个材料或介绍一个超纲的知识或给出一个针对某一种题目的解法,然后再给出条件出题。

  (四)多种函数交叉综合问题

  初中接触的函数主要有一次函数、二次函数和反比例函数。这类题目本身并不会太难,很少作为压轴题目出现,一般都是作为一道中档次题目出现来考查学生对函数的掌握。

  (五)动态几何

  从历年的中考来看,动态几何往往作为压轴的题目出现,得分率也是最低的。动态几何一般分为两类,一类是代数综合方面,在坐标系中,动直线一般是用多种函数交叉求解。另一类是几何综合题,在梯形、矩形和三角形中设立动点,考查学生的综合分析能力。

  (六)图形位置关系

  中学数学当中,图形位置关系主要包括点、线、三角形、矩形和正方形及它们之间的关系。在中考中会包括在函数、坐标系及几何题中,其中最重要的是三角形的各种问题。

中考数学复习资料10

  ▽三角形▽

  图中有角平分线,可向两边作垂线。

  也可将图对折看,对称以后关系现。

  角平分线平行线,等腰三角形来添。

  角平分线加垂线,三线合一试试看。

  线段垂直平分线,常向两端把线连。

  要证线段倍与半,延长缩短可试验。

  三角形中两中点,连接则成中位线。

  三角形中有中线,延长中线等中线。

中考数学复习资料11

  tan3α=sin3α/cos3α

  =(sin2αcosα+cos2αsinα)/(cos2αcosα-sin2αsinα)

  =(2sinαcos^2(α)+cos^2(α)sinα-sin^3(α))/(cos^3(α)-cosαsin^2(α)-2sin^2(α)cosα)

  上下同除以cos^3(α),得:

  tan3α=(3tanα-tan^3(α))/(1-3tan^2(α))

  sin3α=sin(2α+α)=sin2αcosα+cos2αsinα

  =2sinαcos^2(α)+(1-2sin^2(α))sinα

  =2sinα-2sin^3(α)+sinα-2sin^3(α)=3sinα-4sin^3(α)

  cos3α=cos(2α+α)=cos2αcosα-sin2αsinα

  =(2cos^2(α)-1)cosα-2cosαsin^2(α)

  =2cos^3(α)-cosα+(2cosα-2cos^3(α))

  =4cos^3(α)-3cosα

  即

  sin3α=3sinα-4sin^3(α)

  cos3α=4cos^3(α)-3cosα

中考数学复习资料12

  中考数学复习资料:选择题

  1、排除法。是根据题设和有关知识,排除明显不正确选项,那么剩下唯一的选项,自然就是正确的选项,如果不能立即得到正确的选项,至少可以缩小选择范围,提高解题的准确率。排除法是解选择题的间接方法,也是选择题的常用方法。

  2、特殊值法。即根据题目中的条件,选取某个符合条件的特殊值或作出特殊图形进行计算、推理的方法。用特殊值法解题要注意所选取的值要符合条件,且易于计算。此类问题通常具有一个共性:题干中给出一些一般性的条件,而要求得出某些特定的结论或数值。在解决时可将问题提供的`条件特殊化。使之成为具有一般性的特殊图形或问题,而这些特殊图形或问题的答案往往就是原题的答案。利用特殊值法解答问题,不仅可以选用特别的数值代入原题,使原题得以解决而且可以作出符合条件的特殊图形来进行计算或推理。

  3、通过猜想、测量的方法,直接观察或得出结果。这类方法在近年来的中考题中常被运用于探索规律性的问题,此类题的主要解法是运用不完全归纳法,通过试验、猜想、试误验证、总结、归纳等过程使问题得解。

中考数学复习资料13

  一、课堂学习的习惯

  课堂学习是学习活动的主要阵地。课堂学习习惯主要表现为:会笔记、会比较、会质疑、会分析、会合作。

  1、会笔记 上课做笔记并不是简单地将老师的板书进行抄写,而是将学到的知识点、一些类型题的解题一般规律和技巧、常见的错误等进行整理。做笔记实际是对数学内容的浓缩提炼。要经常翻阅笔记,加强理解,巩固记忆。另外,做笔记还能使你的注意力集中,学习效率更高。

  2、会比较 在学习基础知识(如概念、定义、法则、定理等)时,要运用对比、类比、举反例等思维方式,理解它们的内涵和外延,将类似的、易混淆的基础知识加以区分。如找出“同类项”和“同类二次根式”,“正比例函数”和“一次函数”,“轴对称图形”和“中心对称图形”,“平方根”和“立方根”,“半径”和“直径”,等概念的异同点,达到合理运用的目的。

  3、会质疑 “学者要会疑”,要善于发现和寻找自己的思维误区,向老师或同学提问。积极提问是课堂学习中获得知识的.重要途径,同时也要敢于向老师同学的观点、做法质疑,锻炼自己的批判性思维。学习中哪怕有一点点的问题,也要大胆提问,不能留下知识上的“死角”,否则问题就会积少成多,为后续学习设置障碍。

  4、会分析 一是要认真审题:先弄清楚题目给出的条件和要解答的问题,把一些已知条件填在图形上,并将一些关键词做好标记,达到显露已知条件,同时又挖掘隐含条件的目的。如做几何体时,将已知的相等的角、线段、面积及已知的角、线段、位置关系等在图形中做好标记,避免忘记。再如做应用题时,象“不超过”“不足”等字眼,就暗示着存在不等量关系。只有弄清楚已知条件和所要解答的问题才能有目的、有方向地解题;二是要认真思索:依据题目中题设和结论,寻找它们的内在联系,由题设探求结论,即“由因求果”,或从结论入手,根据问题的条件找到解决问题的方法,即“由果索因”,或将两种方法结合起来,需找解题方法。要注意“一题多解”、“一题多变”、“一图多用”、“一法多题”等,拓展思路,训练自己的求异思维。

  5、会合作 英国著名剧作家萧伯纳曾经说过“你给我一个苹果,我给你一个苹果,我们每人只有一个苹果;你给我一个思想,我给你一个思想,我们每人就有两个思想了”,这足以说明合作、交流的学习方式的重要性。我们主要的学习方式是自主学习,在独立思考的基础上,要适时地和同桌交流意见。在小组学习期间,要积极发表自己的观点和见解,倾听他人的发言,并作出合理的评判,以锻炼自己的表达能力和鉴别能力。

  二、课外作业的习惯

  课外作业是数学学习活动的一个组成部分,它包括:复习、作业等。

  1、复习 及时复习当天学过的数学知识,弄清新学的内容、重点内容及难于理解和掌握的内容。首先凭大脑的追忆,想不起来再阅读课本及笔记。在最短的时间内进行复习,对知识的理解和运用的效果才能最好,相隔时间长了去复习,其效果不明显,“学而时习之”就是这个道理。同时,要坚持每天、每周、每单元、每学期进行复习,使复习层层递进、环环紧扣,这样才能在正确理解知识的基础上,熟练地运用知识。

  2、作业 会学习的同学都是当天作业当天完成,先复习,后做作业。一定要独立完成,决不能依赖别人。书写一定要整洁,逻辑一定要条理。对作业要自我检查,及时改正存在的错误。

中考数学复习资料14

  一、相似三角形(7个考点)

  考点1:相似三角形的概念、相似比的意义、画图形的放大和缩小

  考核要求:(1)理解相似形的概念;(2)掌握相似图形的特点以及相似比的意义,能将已知图形按照要求放大和缩小。

  考点2:平行线分线段成比例定理、三角形一边的平行线的有关定理

  考核要求:理解并利用平行线分线段成比例定理解决一些几何证明和几何计算。

  注意:被判定平行的一边不可以作为条件中的对应线段成比例使用。

  考点3:相似三角形的概念

  考核要求:以相似三角形的概念为基础,抓住相似三角形的特征,理解相似三角形的定义。

  考点4:相似三角形的判定和性质及其应用

  考核要求:熟练掌握相似三角形的判定定理(包括预备定理、三个判定定理、直角三角形相似的判定定理)和性质,并能较好地应用。

  考点5:三角形的重心

  考核要求:知道重心的定义并初步应用。

  考点6:向量的有关概念

  考点7:向量的加法、减法、实数与向量相乘、向量的线性运算

  考核要求:掌握实数与向量相乘、向量的线性运算

  二、锐角三角比(2个考点)

  考点8:锐角三角比(锐角的正弦、余弦、正切、余切)的概念,30度、45度、60度角的三角比值。

  考点9:解直角三角形及其应用

  考核要求:

  (1)理解解直角三角形的意义;(2)会用锐角互余、锐角三角比和勾股定理等解直角三角形和解决一些简单的实际问题,尤其应当熟练运用特殊锐角的三角比的值解直角三角形。

  三、二次函数(4个考点)

  考点10:函数以及函数的定义域、函数值等有关概念,函数的表示法,常值函数

  考核要求:

  (1)通过实例认识变量、自变量、因变量,知道函数以及函数的定义域、函数值等概念;

  (2)知道常值函数;

  (3)知道函数的表示方法,知道符号的意义。

  考点11:用待定系数法求二次函数的解析式

  考核要求:

  (1)掌握求函数解析式的方法;

  (2)在求函数解析式中熟练运用待定系数法。

  注意求函数解析式的步骤:一设、二代、三列、四还原。

  考点12:画二次函数的图像

  考核要求:

  (1)知道函数图像的意义,会在平面直角坐标系中用描点法画函数图像;

  (2)理解二次函数的图像,体会数形结合思想;

  (3)会画二次函数的大致图像。

  考点13:二次函数的图像及其基本性质

  考核要求:

  (1)借助图像的直观、认识和掌握一次函数的性质,建立一次函数、二元一次方程、直线之间的联系;

  (2)会用配方法求二次函数的顶点坐标,并说出二次函数的有关性质。

  注意:

  (1)解题时要数形结合;

  (2)二次函数的平移要化成顶点式。

  四、圆的相关概念(6个考点)

  考点14:圆心角、弦、弦心距的概念

  考核要求:清楚地认识圆心角、弦、弦心距的概念,并会用这些概念作出正确的判断。

  考点15:圆心角、弧、弦、弦心距之间的关系

  考核要求:认清圆心角、弧、弦、弦心距之间的关系,在理解有关圆心角、弧、弦、弦心距之间的关系的定理及其推论的基础上,运用定理进行初步的几何计算和几何证明。

  考点16:垂径定理及其推论

  垂径定理及其推论是圆这一板块中最重要的知识点之一。

  考点17:直线与圆、圆与圆的位置关系及其相应的数量关系

  直线与圆的位置关系可从它们之间的关系和交点的个数这两个侧面来反映。在圆与圆的位置关系中,常需要分类讨论求解。

  考点18:正多边形的有关概念和基本性质

  考核要求:熟悉正多边形的有关概念(如半径、边心距、中心角、外角和),并能熟练地运用正多边形的基本性质进行推理和计算,在正多边形的计算中,常常利用正多边形的半径、边心距和边长的一半构成的直角三角形,将正多边形的计算问题转化为直角三角形的计算问题。

  考点19:画正三、四、六边形。

  考核要求:能用基本作图工具,正确作出正三、四、六边形。

  五、数据整理和概率统计(9个考点)

  考点20:确定事件和随机事件

  考核要求:

  (1)理解必然事件、不可能事件、随机事件的概念,知道确定事件与必然事件、不可能事件的关系;

  (2)能区分简单生活事件中的必然事件、不可能事件、随机事件。

  考点21:事件发生的可能性大小,事件的概率

  考核要求:

  (1)知道各种事件发生的可能性大小不同,能判断一些随机事件发生的可能事件的大小并排出大小顺序;

  (2)知道概率的含义和表示符号,了解必然事件、不可能事件的概率和随机事件概率的取值范围;

  (3)理解随机事件发生的频率之间的区别和联系,会根据大数次试验所得频率估计事件的概率。

  注意:

  (1)在给可能性的大小排序前可先用“一定发生”、“很有可能发生”、“可能发生”、“不太可能发生”、“一定不会发生”等词语来表述事件发生的可能性的大小;

  (2)事件的概率是确定的常数,而概率是不确定的,可是近似值,与试验的次数的多少有关,只有当试验次数足够大时才能更精确。

  考点22:等可能试验中事件的概率问题及概率计算

  本考点的考核要求是

  (1)理解等可能试验的概念,会用等可能试验中事件概率计算公式来计算简单事件的'概率;

  (2)会用枚举法或画“树形图”方法求等可能事件的概率,会用区域面积之比解决简单的概率问题;

  (3)形成对概率的初步认识,了解机会与风险、规则公平性与决策合理性等简单概率问题。

  在求解概率问题中要注意:

  (1)计算前要先确定是否为可能事件;

  (2)用枚举法或画“树形图”方法求等可能事件的概率过程中要将所有等可能情况考虑完整。

  考点23:数据整理与统计图表

  本考点考核要求是:

  (1)知道数据整理分析的意义,知道普查和抽样调查这两种收集数据的方法及其区别;

  (2)结合有关代数、几何的内容,掌握用折线图、扇形图、条形图等整理数据的方法,并能通过图表获取有关信息。

  考点24:统计的含义

  本考点的考核要求是:

  (1)知道统计的意义和一般研究过程;

  (2)认识个体、总体和样本的区别,了解样本估计总体的思想方法。

  考点25:平均数、加权平均数的概念和计算

  本考点的考核要是:

  (1)理解平均数、加权平均数的概念;

  (2)掌握平均数、加权平均数的计算公式。注意:在计算平均数、加权平均数时要防止数据漏抄、重抄、错抄等错误现象,提高运算准确率。

  考点26:中位数、众数、方差、标准差的概念和计算

  考核要求:

  (1)知道中位数、众数、方差、标准差的概念;

  (2)会求一组数据的中位数、众数、方差、标准差,并能用于解决简单的统计问题。

  注意:当一组数据中出现极值时,中位数比平均数更能反映这组数据的平均水平;

  (2)求中位数之前必须先将数据排序。

  考点27:频数、频率的意义,画频数分布直方图和频率分布直方图

  考核要求:

  (1)理解频数、频率的概念,掌握频数、频率和总量三者之间的关系式;

  (2)会画频数分布直方图和频率分布直方图,并能用于解决有关的实际问题。解题时要注意:频数、频率能反映每个对象出现的频繁程度,但也存在差别:在同一个问题中,频数反映的是对象出现频繁程度的绝对数据,所有频数之和是试验的总次数;频率反映的是对象频繁出现的相对数据,所有的频率之和是1。

  考点28:中位数、众数、方差、标准差、频数、频率的应用

  本考点的考核要是:

  (1)了解基本统计量(平均数、众数、中位数、方差、标准差、频数、频率)的意计算及其应用,并掌握其概念和计算方法;

  (2)正确理解样本数据的特征和数据的代表,能根据计算结果作出判断和预测;

  (3)能将多个图表结合起来,综合处理图表提供的数据,会利用各种统计量来进行推理和分析,研究解决有关的实际生活中问题,然后作出合理的解决。

中考数学复习资料15

  1、轴对称图形:把一个图形沿着某一条直线对折,两边能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。

  2、成轴对称图形的特征和性质:①对称点到对称轴的距离相等;②对称点的.连线与对称轴垂直;③对称轴两边的图形大小形状完全相同。

  3、物体旋转时应抓住三点:①旋转中心;②旋转方向;③旋转角度。旋转只改变物体的位置,不改变物体的形状、大小。

【中考数学复习资料】相关文章:

中考生物复习资料02-25

高考数学复习资料方法12-08

春季高考数学复习资料12-08

合理选择考研数学复习资料02-03

中考语文文言文复习资料12-09

考研数学如何选择合适的复习资料12-09

中考文言文通假字复习资料12-09

考研数学必考考点阶段复习资料12-07

中考语文文言文的复习资料:词类活用12-09

中考数学复习必备的数学大全12-09