考研数学的复习方法

时间:2022-12-09 17:41:02 考研复习 我要投稿

2018考研数学的复习方法

  数学是考研的拉分科目,考生一定要加以重视。2018考研数学你准备好了吗?接下来,阳光网小编为你分享2018考研数学的一些复习方法,希能帮到您!

2018考研数学的复习方法

  2018考研数学:课本、真题、习题册,应该怎么用

  很多人说考研数学要首重基础,这是正确的,但是重视基础就意味着要花大量的时间在课本习题上吗?关于数学课本、真题、练习题等各种备考材料,究竟要如何使用才能发挥其最大的功效?数学的考研复习,也是要讲究技巧的。

  关于数学课本的学习方法

  很多人说考研数学注重基础,数学课本如何如何重要,应该花大量时间去看。其实这种观点有些片面,考研数学注重考查基础是对的,但重基础并不就是多看课本。

  大家用的课本大多是同济六版的,内容很多,当你把这本书拿在手里并参考大纲进行比对时,你会发现哪些部分比较重要,哪些部分不重要或不考,但你不会明白考研数学如何对这一部分进行考查。同济课本不是专门为考研而编写的因而其课后题与考研题相去甚远,即使你把课本上所有的题目都掌握之后,也不见得会做几道考研题。

  有的`同学就是一心只看课本,考试之后再感叹“这些题我都看着面熟,就是不会做!”其中原因是什么呢?结果不言而喻。因此,大家无需把课本看得过重。

  关于复习全书的学习方法

  对于报名参加了复习班的同学来说,上课笔记还是非常重要的。如果大家能够将辅导强化班的笔记里的题型和全书题型结合起来总结一本笔记的话,对你考研数学档次提升的帮助将是巨大的。

  当你把全书复习和辅导班笔记整合起来总结题型,这种总结对你的影响会非常大,做得好之后甚至不需要再看全书,因为题型和做题方法已经掌握的差不多了,不需要再去翻全书。这项工作是费时费力的,希望大家量力而行!

  关于学习方法

  真题一定要做。相对来说,真题是比较简单的,考研题的出题模式是很固定的,只要不出现计算错误肯定是没有问题的。建议大家选择一本合适的练习题,以此锻炼出做题速度。比如上午拿出三个小时模拟,尽量在规定时间内完成所有题目。

  这个时候千万不要失落和放弃,一定要坚持下来,慢慢就会适应的。当你经过周密的思考和复杂的计算能够做对题目,拿下130+的分数时,说明你的数学已经掌握的不错了。

  还有一点,要加强对数学理论的研究,你可以试着用一种通俗的方式将一条晦涩的定理将给同学听,使他也能够明白。如果能够达到这样的话,说明你已领悟了该定理的真谛,做题也就没什么难的了!

  总之,对待数学要勤于思考,善于总结,平时多做多练,得高分还是相对容易的。

  2018年考研数学高数常考考点梳理

  1.函数、极限与连续

  求分段函数的复合函数;

  求极限或已知极限确定原式中的常数;

  讨论函数的连续性,判断间断点的类型;

  无穷小阶的比较;

  讨论连续函数在给定区间上零点的个数,或确定方程在给定区间上有无实根。

  这一部分更多的会以选择题,填空题,或者作为构成大题的一个部件来考核,复习的关键是要对这些概念有本质的理解,在此基础上找习题强化。

  2.一元函数微分学

  求给定函数的导数与微分(包括高阶导数),隐函数和由参数方程所确定的函数求导,特别是分段函数和带有绝对值的函数可导性的讨论;

  利用洛比达法则求不定式极限;

  讨论函数极值,方程的根,证明函数不等式;

  利用罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒中值定理证明有关命题,如“证明在开区间内至少存在一点满足……”,此类问题证明经常需要构造辅助函数;

  几何、物理、经济等方面的最大值、最小值应用问题,解这类问题,主要是确定目标函数和约束条件,判定所讨论区间;

  利用导数研究函数性态和描绘函数图形,求曲线渐近线。

  3.一元函数积分学

  计算题:计算不定积分、定积分及广义积分;

  关于变上限积分的题:如求导、求极限等;

  有关积分中值定理和积分性质的证明题;

  定积分应用题:计算面积,旋转体体积,平面曲线弧长,旋转面面积,压力,引力,变力作功等;

  综合性试题。

  4.向量代数和空间解析几何

  计算题:求向量的数量积,向量积及混合积;

  求直线方程,平面方程;

  判定平面与直线间平行、垂直的关系,求夹角;

  建立旋转面的方程;

  与多元函数微分学在几何上的应用或与线性代数相关联的`题目。

  这一部分为数一同学考查,难度在考研数学中应该是相对简单的,找辅导书上的习题练习,需要做到快速正确的求解。

  5.多元函数的微分学

  判定一个二元函数在一点是否连续,偏导数是否存在、是否可微,偏导数是否连续;

  求多元函数(特别是含有抽象函数)的一阶、二阶偏导数,求隐函数的一阶、二阶偏导数;

  求二元、三元函数的方向导数和梯度;

  求曲面的切平面和法线,求空间曲线的切线与法平面,该类型题是多元函数的微分学与前面向量代数与空间解析几何的综合题,应结合起来复习;

  多元函数的极值或条件极值在几何、物理与经济上的应用题;求一个二元连续函数在一个有界平面区域上的最大值和最小值。这部分应用题多要用到其他领域的知识,考生在复习时要引起注意。

  这部分应用题多要用到其他领域的知识,在复习时要引起注意,可以找一些题目做做,找找这类题目的感觉。

  6.多元函数的积分学

  二重、三重积分在各种坐标下的计算,累次积分交换次序;

  第一型曲线积分、曲面积分计算;

  第二型(对坐标)曲线积分的计算,格林公式,斯托克斯公式及其应用;

  第二型(对坐标)曲面积分的计算,高斯公式及其应用;

  梯度、散度、旋度的综合计算;

  重积分,线面积分应用;求面积,体积,重量,重心,引力,变力作功等。数学一考生对这部分内容和题型要引起足够的重视。

  7.无穷级数

  判定数项级数的收敛、发散、绝对收敛、条件收敛;

  求幂级数的收敛半径,收敛域;

  求幂级数的和函数或求数项级数的和;

  将函数展开为幂级数(包括写出收敛域);

  将函数展开为傅立叶级数,或已给出傅立叶级数,要确定其在某点的和(通常要用狄里克雷定理);

  综合证明题。

  8.微分方程

  求典型类型的一阶微分方程的通解或特解:这类问题首先是判别方程类型,当然,有些方程不直接属于我们学过的类型,此时常用的方法是将x与y对调或作适当的变量代换,把原方程化为我们学过的类型;

  求解可降阶方程;

  求线性常系数齐次和非齐次方程的特解或通解;

  根据实际问题或给定的条件建立微分方程并求解;

  综合题,常见的是以下内容的综合:变上限定积分,变积分域的重积分,线积分与路径无关,全微分的充要条件,偏导数等。

  考研数学压轴必考题型:参数估计

  参数估计是考研概率的最后一个考点,近几年参数估计一直是数一和数三的必考题目,必出现在整张试卷的最后一道大题,压轴出场,分值11分。

  虽然16年考研数学一和数学三最后一道题均未考查,但16年数学一填空题考查了区间估计,分值4分,但17年数一和数三均考查了一道大题,分值11分,迄今参数估计这个考点的重要地位仍不可撼动。跨考教育数学教研室田晓辉老师来为大家解析。

  参数估计这章,数一和数三公共考点为点估计,包括矩估计和极大似然估计,另外数一还考查区间估计,包括单个正态总体的均值和方差的区间估计、两个正态总体的均值差和方差比的区间估计。

  本章考研主要题型为:

  (1)参数的点估计:矩估计、极大似然估计估计量的评选标准(数一考查)

  (2)参数的区间估计:正态总体的区间估计(数一考查)

  矩估计的基本思想:由大数定律可知样本矩、样本矩的连续函数依概率收敛于相应的总体矩、总体矩的连续函数,由此可建立总体分布中未知参数满足的方程(组),解之可得总体未知参数的点估计。这种构造点估计量的方法称为矩估计法,求得的点估计称为矩估计量(值)其方法步骤如下:

  构建未知参数的方程,通过总体的原点矩来构造

  解方程,解出未知参数

  用样本矩代替总体矩,得未知参数的矩估计量(值)

  极大似然估计法的基本思想:样本发生的可能性最大原则——即对未知参数进行估计时,在未知参数的变化范围内选取使“样本取此观测值”的'概率最大的参数值作为未知参数的点估计。这样得到的矩估计值为最大似然估计值,相应的量为最大似然估计量。其方法步骤为:“造似然”求导数,找驻点得估计。

  构造自然函数,注意,离散总体和连续总体的似然函数不同

  取对数

  求导数找驻点得估计。

  注意,若似然方程无解,则必有导数大于或小于零,此时只要在未知参数的变化范围内找其右边界点或左边界点即可。

  估计量的评选标准:无偏性、有效性、一致性,掌握其概念即可。无偏估计考查较多。

  参数的区间估计:了解区间估计概念、掌握求置信区间的方法。求置信区间的一般方法步骤为:

  第一步,选枢轴量定分布;

  第二步,造大概率事件得不等式;

  第三步,解不等式得置信区间。

  以上是数一和数三对参数估计部分的全部考点,期望大家能熟练理解其思想和熟练掌握方法步骤,多练习,已达到熟练解题的要求。

  概率的题目题型比较固定,考生如若能掌握考试常见题型及解题基本方法,便能胸有成竹,自信满满的将概率这科拿下,考研数学三个科目中概率最易拿分,希望考生们一定将此科目满分拿下,切不可掉以轻心。


【考研数学的复习方法】相关文章:

数学考研复习方法05-07

考研数学的复习方法05-12

考研数学大纲复习方法05-02

考研数学的强化复习方法05-04

数学考研规划复习方法05-05

关于考研数学的复习方法05-05

考研数学复习方法介绍05-06

考研数学复习方法建议05-02

2018考研数学基础复习方法05-11