数学学习计划
时光飞逝,时间在慢慢推演,成绩已属于过去,新一轮的学习生活即将来临,此时此刻需要制定一个详细的学习计划了哦。好的学习计划是什么样的呢?以下是小编精心整理的数学学习计划,仅供参考,希望能够帮助到大家。
数学学习计划1
大家知道,凡成绩优秀的同学,他们既是过程的决策者,又是过程的管理者和执行者,他们的学习过程总是有条不紊,亦张亦弛。而学习困难的同学,要么整天无所事事,要么手慌脚乱,碰碰这样,拿拿那样,心神不定,恍惚焦虑。怎样制定好计划呢?下面以数学学科为例,谈谈计划的类型以及制定计划的注意事项。
一、宏观计划树立目标
树立远大理想并非空话,俗话说:“求高得中,求中得低。”一个人有宏伟目标,一定会为实现这个目标而勤奋努力。因为努力,必然丰富人生的知识、能力和精神积沉。为建立人生大厦打下坚实的基础。
一个人有了理想,学习就会干劲倍增;一个人有了理想,人生就乐观向上;一个人有了理想,就信心十足;一个人有了理想,就毅力无穷。
没有人生计划的人,就会显得碌碌无为,精神上显得未老先衰,做事情得过且过,经常抱怨,甚至时常搞点恶作剧,寻求一时精神刺激,因为没有学习的源动力,所以疲于应付,天长日久就成为落伍者而心安理得。
我们走访了部分优秀的学生,他们有的坦然理想,雄心勃勃;有的虽不善言表,但胸怀大志。总之他们都有目标在激励!希望还没有人生目标或目标不明的同学,赶快根据自己的兴趣爱好和能力特点确定人生目标,让人生旅途有盏明灯。
二、中期计划条块分明
中期计划也就是阶段性计划。举个例子吧,我国的经济发展,按照时间的顺序,设计为一个个五年规划。在每个五年计划中,明确提出经济建设的任务,需要达到的目标,所要采取的措施等等。这样,我们就思路清晰,抓住重点,统筹安排,稳步前进。
作为高中学生,为了制定好学习数学的阶段计划,可以把每学年作为一个阶段进行制定。
高一年级我们要脚踏实地的完成课本知识的学习,发展相应的数学能力,达到一定的考核目的。完成与教材配套的教学参考书一套,并且钻研一至两本数学扩展书籍。每学期至少参加一次社会实践活动,并将获得的数据进行处理,建立数学模型,尝试解决,完成实践报告。还可以写出数学学习的阶段性学习小结,也可以试着撰写数学小论文等。这样就能夯实基础,发展能力,学会学习,促进创新。
高二年级应该基本完成高中数学知识的学习任务,提出考核目标。利用两大假期对知识和方法进行梳理,形成网络。找出学习的薄弱环节,并尽早查漏补缺。在高二学年中,要对某些重要数学问题进行专题学习,展开研究,力争突破。注重学法总结,保证学习高质高效;注意数学思想方法的钻研,用辩证的思想指导我们的数学学习,为高三的综合复习打下坚实的知识、方法和思想基础。
高三年级是高考的综合复习阶段。时间紧,任务重,压力大。计划显得更为重要。必须做到:研究考纲,明确要求;重视课本,夯实双基;梳理知识,形成网络;关注生活,学会应用;错题建档,查漏补缺;抽象概括,发展能力;挑战新境,提升学法;引申变化,探究创新;重视考试,提高考技;心理调适,决胜高考。
三、短期计划切实可行
短期计划一般是指周计划,学习者可以非常具体的制定自己的时间安排,他是操作性很强的计划。就是一周内阅读什么参考书,完成什么作业,重点研讨哪个章节的内容,完成那个章节的错题整理,归纳梳理那部分知识和方法等,一一例举清楚,定好完成时间,一旦计划定好后,严格执行,不找借口,保质保量完成。
短期计划,要分不同的时段有所侧重,不要千篇一律。例如在放假时要劳逸结合,注意查漏补缺,安排好实践活动,做好调查研究工作;考试前的一周要安排知识梳理,归纳总结,查阅笔记,考前模拟等;考试后的一周要进行经验总结,教训反思,薄弱知识和方法的补救,学习方法的调整等;学期中途的一般时间段里,应有条不紊安排知识学习,方法训练,做好自学、互学,做好感兴趣的专题研究,或每隔一段时间写一篇数学小品文章等。以上更要求我们在制定计划时,考虑到相应时间的重点任务,安排时注意轻重缓急,同时也要考虑到一些突击性的任务的安排。
短期计划要克服一些不妥的安排。如,凭兴趣偏科安排,导致短项学科被忽视,形成恶性循环。还有为了快速提高成绩,急功近利,时间安排太紧,执行起来过度疲劳,效益降低,影响学习情绪和身体健康,应保证张弛有度,应对自如。
四、及时计划保证落实
即时计划一般指日计划,他是将短期计划进行适当分解后,落实到具体每天的任务,以及每天的即时任务构成的`计划,他是非常具体的,具有可操作性和可执行性,是最现实的。
制定日计划要服从老师的教学进度与要求。把与教学进度同步的任务优先安排,并保证完成,如果新授的内容还不清楚的情况下去做其他的事情,会得不偿失,事倍功半。如果新学的内容已经得心应手,学有余力,也可以适当安排自主学习的内容。
制定日计划要学会平衡。有的同学学习被动,老师抓得紧就多投入,老师抓的松些就少投入,甚至不闻不问。殊不知,数学一天不练习,就会影响思维速度,拿到题目就会反应慢,上手迟缓且容易错,必须学会自我调节,做到拳不离手,曲不离口,“数学天天见”。
完成日计划要不折不扣。一旦计划定好以后,必须坚决执行,保证完成。不能找种种借口拖延计划的完成,必须今日事今日毕。任务不能积累,因为明天又有新的任务在等待着你。每天10道题可以克服困难,完成任务。如果几天积累到一起,就是几十道题,似乎没有办法完成了,有时就会横下一条心——干脆不做!丧失了信心和斗志。
学好数学,计划先行,希望大家定好计划,坚持不懈,养成良好的学习习惯,取得数学学习的成功。
数学学习计划2
学习教材:高等数学上、下册(同济大学数学系编,第六版),线性代数(同济大学数学系编,第五版),概率论与数理统计(浙江大学盛骤编,第四版)
学习时间:3月份-6月份
学习目的:通过对整个课本的全称学习,掌握考研数学的考点内容
学习方法:参加领航教育的基础导学课程,可以通过导学课程掌握考研复习的学习方法。概念部分:一定要记准了概念,有许多选择题就是由概念引深出来的或者是直接的概念题,并且要理解。公式部分:自己准备个单独的小笔记,把高数、线代、概率里面所有的公式都要整理出来,不是从课本上抄下来,是结合自己的理解来记忆并能灵活的运用。自己要有一个错题集和经典题集,专门用来收集自己错过的经典的题,并标注好知识点。
学习计划:
一、3月24号上午9:00----11:00
不定积分
1.原函数、不定积分的概念;
2.不定积分的基本公式,不定积分的性质,不定积分的换元积分法与分部积分法;
3.会求有理函数和简单无理函数的积分.
定积分
1.定积分的概念和性质,定积分中值定理;
2.定积分的换元积分法与分部积分法;
3.积分上限的函数的概念和它的导数,牛顿-莱布尼茨公式;
4.反常积分的概念与计算;
5.用定积分计算平面图形的面积、旋转体的体积,函数的平均值.
:本章的基础课后习题
二、3月31号上午9:00----11:00
微分方程
1.微分方程及其阶、解、通解、初始条件和特解等概念;
2.变量可分离的微分方程及一阶线性微分方程的解法;
3.齐次微分方程的解法;
4.线性微分方程解的性质及解的结构;
5.二阶常系数齐次线性微分方程的解法;
6.会解自由项为多项式、指数函数、正弦函数、余弦函数的二阶常系数非齐次线性微分方程.
作业:本章的基础课后习题
三、4月7号上午9:00----11:00
来总部阶段测评
四、4月14号上午9:00----11:00
多元函数微分学
1.二元函数的概念与几何意义;
2.二元函数的极限与连续的概念,有界闭区域上连续函数的性质;
3.多元函数偏导数和全微分的概念,全微分存在的必要条件和充分条件,全微分形式的不变性,会求全微分;
4.多元复合函数一阶、二阶偏导数的求法;
5.隐函数存在定理,计算多元隐函数的偏导数;
6.多元函数极值和条件极值的概念,二元函数极值存在的必要条件、充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值.
作业:本章的基础课后习题
五、4月21号上午9:00----11:00
重积分
1.二重积分的概念和性质,二重积分的中值定理;
2.会利用直角坐标、极坐标计算二重积分.
级数
1.常数项级数收敛、发散以及收敛级数的和的概念,级数的基本性质及收敛的必要条件;
2.几何级数与级数的收敛与发散的条件;
3.正项级数收敛性的比较判别法和比值判别法;
4.交错级数和莱布尼茨判别法;
5.任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系;
6.函数项级数的收敛域及和函数的概念;
7.幂级数的收敛半径、收敛区间及收敛域的求法;
8.幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求一些幂级数在收敛区间内的和函数;
9.函数展开为泰勒级数的充分必要条件;
10.,,,及的麦克劳林(Maclaurin)展开式,会用它们将一些简单函数间接展开为幂级数.
作业:本章的基础课后习题
六、4月28号上午9:00----11:00
行列式
1.行列式的概念和性质,行列式按行(列)展开定理.
2.用行列式的性质和行列式按行(列)展开定理计算行列式.
3.用克莱姆法则解齐次线性方程组.
作业:本章的基础课后习题
对角行列式、上(下)三角形行列式值的结论需要记住,以后直接使用,熟记范德蒙行列式的特点与计算公式
七、5月5号上午9:00----11:00
矩阵
1.矩阵的概念,单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵的概念和性质.
2.矩阵的线性运算、乘法运算、转置以及它们的运算规律.
3.方阵的幂与方阵乘积的行列式的性质.
4.逆矩阵的概念和性质,矩阵可逆的充分必要条件.
5.伴随矩阵的概念,用伴随矩阵求逆矩阵.
6.分块矩阵及其运算
作业:本章的基础课后习题
八、5月12号上午9:00----11:00
总部考试
九、5月19号上午9:00----11:00
向量与线性方程组
1.齐次线性方程组有非零解的充分必要条件,非齐次线性方程组有解的充分必要条件.
2.齐次线性方程组的基础解系、通解及解空间的概念,齐次线性方程组的基础解系和通解的求法.
3.非齐次线性方程组解的结构及通解.
4.用初等行变换求解线性方程组的方法.
5.维向量、向量的线性组合与线性表示的.概念
6.向量组线性相关、线性无关的概念,向量组线性相关、线性无关的有关性质及判别法.
7.向量组的极大线性无关组和向量组的秩的概念和求解.
8.向量组等价的概念,矩阵的秩与其行(列)向量组的秩之间的关系.
作业:本章的基础课后习题
十、5月26号上午9:00----11:00
矩阵的特征值和特征向量
1.内积的概念,线性无关向量组正交规范化的施密特(Schmidt)方法.
2.规范正交基、正交矩阵的概念以及它们的性质.
3.矩阵的特征值和特征向量的概念及性质,求矩阵的特征值和特征向量.
4.相似矩阵的概念、性质,矩阵可相似对角化的充分必要条件,将矩阵化为相似对角矩阵的方法.
5.实对称矩阵的特征值和特征向量的性质.
作业:本章的基础课后习题
二次型
1.二次型及其矩阵表示,二次型秩的概念,合同变换与合同矩阵的概念,二次型的标准形、规范形的概念以及惯性定理.
2.正交变换化二次型为标准形,配方法化二次型为标准形.
3.正定二次型、正定矩阵的概念和判别法.
作业:本章的基础课后习题
十一、6月2号上午9:00----11:00
考试
十二、6月9号上午9:00----11:00
随机事件和概率
1.样本空间(基本事件空间)的概念,随机事件的概念,事件的关系及运算.
2.概率、条件概率的概念,概率的基本性质.
3.会计算古典型概率和几何型概率.
4.概率的五大公式:加法公式、减法公式、乘法公式、全概率公式、贝叶斯(Bayes)公式.
5.事件独立性的概念与计算.
作业:本章的基础课后习题
随机变量及其分布
1.随机变量的概念,分布函数的概念及性质.
2.独立重复试验的概念与有关事件概率的计算.
3.离散型随机变量及其概率分布的概念,几种常见的离散型随机变量:0-1分布、二项分布、几何分布、超几何分布、泊松(Poisson)分布.
4.连续型随机变量及其概率密度的概念,几种常见的连续型随机变量:均匀分布、正态分布、指数分布.
5.随机变量函数的分布.
作业:本章的基础课后习题
十三、6月16号上午9:00----11:00
多维随机变量及分布
1.多维随机变量的概念,多维随机变量的分布的概念和性质.
2.二维离散型随机变量的概率分布、边缘分布和条件分布.
3.二维连续型随机变量的概率密度、边缘密度和条件密度.
4.随机变量的独立性及不相关性的概念,随机变量相互独立的条件.
5.二维均匀分布,二维正态分布的概率密度,求理解其中参数的概率意义.
6.两个随机变量简单函数的分
作业:本章的基础课后习题
十四、6月23号上午9:00----11:00
考试
十五、6月30号上午9:00----11:00
随机变量的数字特征
1.随机变量数字特征:数学期望、方差、标准差、矩、协方差、相关系数的概念.
2.会运用数字特征的基本性质,并掌握常用分布的数字特征.
3.随机变量函数的数学期望.
4.切比雪夫不等式.
作业:本章的基础课后习题
大数定律和中心极限定理
1.切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律).
2.棣莫弗-拉普拉斯定理(二项分布以正态分布为极限分布)和列维-林德伯格定理(独立同分布随机变量序列的中心极限定理)
作业:本章的基础课后习题
样本及抽样分布
1.总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念.
2.分布、分布和分布的概念及性质,上侧分位数的概念并会查表.
3.正态总体的常用抽样分布.
作业:本章的基础课后习题
矩估计和最大似然估计
1.参数的点估计、估计量与估计值的概念.
2.矩估计法(一阶矩、二阶矩)和最大似然估计法.
作业:本章的基础课后习题
7月1号到20号,自己将学习过程中得重点难点整理到笔记上,然后把练习时做过的错题重新做一遍,并把对应的知识点复习一遍,以便暑期能跟上强化班的进度。
7月底到8月中旬:暑假强化班
学习难点:可能第一遍复习完,老师刚讲过的题当时听明白了,课下回去做得时候还是没有思路或者出错,这是很常见的现象,这时候要把知识点定位,然后回想老师对知识点的解说,或者看看课本例题,一定不要浮躁,要理解知识点,不只是套公式,灵活的运用。
数学学习计划3
复习内容:
1、掌握数的顺序和大小,掌握9以内各数的组成。
2、初步知道加、减法的含义和加减法算式中各部分部分名称,初步知道加法和减法的关系,比较熟练地计算一位数的加法和9以内的减法。
3、初步学会根据加、减法的含义和算法解决一些简单的实际问题。
4、直观认识长方体、正方体、圆柱、球、长方形、正方形、三角形和圆。
5、初步了解分类的方法,会进行简单的分类。
6、认真作业、书写整洁的良好习惯。
7、通过实践活动体验数学与日常生活的密切联系。
复习目标:
1、理解加、减法的含义,进一步理解和掌握9以内的加、减法,能正确、熟练地口算相关的式题,形成相应的计算技能。
2、在具体的.活动中,进一步认识长方体、正方体、圆柱和球,认识上下、前后、左右等方位,能应用分一分、排一排、数一数等方法收集和整理一些简单的数据,培养初步的空间观念和统计观念。
3、在应用所学知识解决简单实际问题的过程中,进一步发展分析问题、解决问题的能力,体会数学在日常生活中的广泛应用,培养初步的数学应用意识。
复习措施:
1、复习前,充分了解学生的学习情况,弄清学生对哪些知识掌握的比较好,哪些知识还存在问题,存在什么问题,从而有计划、有针对性地开展复习活动,以增强复习的实效性。
2、复习加减法计算时,可以采用游戏、竞赛等多种形式组织学生练习,以激发学生练习的兴趣,提高计算的正确率和熟练程度,促进计算技能的形成。
3、扎扎实实打好基础知识和基本技能,同时重视培养学生创新意识和学习数学的兴趣。
4、把握好知识的重点、难点以及知识间的内在联系,使学生都在原来的基础上有所提高。
5、把上半学期所学知识分块归类复习,针对单元测试卷、练习册、作业中容易出错的题作重点的渗透复习、设计专题活动,渗透各项数学知识。专题活动的设计可以使复习的内容综合化,给学生比较全面地运用所学知识的机会。
6、根据平时教学了解的情况,结合复习有关的知识点做好有困难学生的辅导工作。
具体安排:
1、数的组成,物体的位置与顺序。(2课时)掌握数的顺序及组成;能确定物体前后、左右、上下的位置与顺序。
2、立体图形与平面图形(1课时)进一步认识长方体、立方体、圆柱体、球和长方形、正方形、三角形、圆。
3、分类(1课时)掌握分类的方法。
4、9以内加减法计算(3课时)通过对算式的计算与分类,整理加减计算方法,提高计算的正确率。激发学生积极思考问题,在复习中感知数学思考的有序性和条理性。
5、图文题(2课时)从量的意义上揭示部分和整体的关系,使学生进一步认识加、减法的关系。提高学生理解图意的能力,能根据图分析简单的数量关系,渗透图中所反映的事物概念之间的种属关系。
数学学习计划4
一、熟悉大纲。
1.不超纲,注意紧扣教材。
回到教材,并非简单地重复和循环,而是要螺旋式的上升和提高。对教材内容引申、扩展。加强纵横联系;对教材的习题可改动条件或结论,加强综合度,以求深化和提高。
2.全面复习。
复习目的不全是为升学,更重要是为今后学习和工作奠基。由于考查面广,若基础不扎实,不灵活,是难以准确完成。因此必须系统复习,不能遗漏。
3.狠抓双基。
重视基本概念、基本技能的复习。对一些重要概念、知识点作专题讲授,反复运用,以加深理解。
4.提高能力。
复习要注意培养学生思维的求异性、发散性、独立性和批评性,逐步提高学生的审题能力、探究能力和综合多项知识或技能的解题能力。
5.分类指导。
学生存在智力发展和解题能力上差异。对优秀生,指导阅读、放手钻研、总结提高的方法去发挥他们的聪明才智。中等生则要求跟上复习进度,在训练中提高能力,对学习有困难的学生建立知识档案,实行逐个辅导,查漏补缺。
二、重视基础。
基础知识、基本技能、基本方法始终是中考考查的重点。在备战中考中,应夯实基础,抓住一个“基”字,追求一个“效”字。要注意知识之间的内在联系,学会构建知识网络,这样在解题时,就能由题目所提供的信息,从记忆系统中检索出有关信息,选出最佳组合,寻找解题途径、优化解题过程。2.强化题组训练,感悟数学思想方法
在备战中考的第二阶段(4、5月份),应突出重难点,强化一个“精”字,兼顾一个“深”字。做综合题,要养成解题后反思的好习惯。同时总结出所用到的数学思想方法,并把思想方法相近的题目编成一组,不断提炼、不断深化。对于几何题,可以多观察图形、多联想、多变式,形成一题多变。3.加强模拟训练,注意解题规范、提高解题速度
在备战中考的第三阶段(6月份),应多做些模拟训练,立足一个“透”字,注重一个“准”字。强化对知识的掌握和答题速度、节奏、经验等方面的积累训练,训练考试能力。在此特别指出的是,解答题过程分比最后的答案重要得多。在平日的作业、练习、考试都要进行规范书写,到了考试才能减少无谓丢分。4.用好“错题本”,攻克薄弱点
编制“错题本”深入纠错,是非常有效的复习方法。把历次考试中不会做的题、做错了的题进行认真的分析,总结经验教训。并且经常地拿出来看看、想想错在哪里,为什么会错,怎么改正。在中考前发现的问题越多,纠正越及时,提高也就越快,信心就越足。5.立足课堂,紧跟老师
复习课基本以练习为主,同学们在复习课上要做好信息处理和分析,把握好课堂复习和自我复习的关系。另外,上课不能只听老师讲,还要敢于提出疑问,积极提出自己新颖独到的思考方法和策略。
三、复习要点。
1.以教材为本,抓好章节复习
在期末复习中有必要制订一个可行的学习计划,先以教材为本把各章节中的知识点系统梳理,构建有自己特色的知识板块。在复习过程中要特别重视各章节的重点内容,典型例题,教材习题,动脑总结这些例题的解题思路是怎样形成的,提供的方法能用来解决哪些问题,重视这些题目的变式训练,拓展自己的视野,做到举一反三,触类旁通,才能短时间出效率,更好地发展自己的能力。
2.提高课堂45分钟的听课效率,搞好查缺补漏工作
期末复习期间必须跟紧老师,课堂45分钟的复习内容,用心聆听,细心体会,动脑琢磨,对已学过的知识回忆感悟体会,巩固掌握不扎实的部分,搞好查处补漏的工作。对于一些容易出错的概念辨析有必要把涉及的概念在理解的基础上记扎实,如“判别方程组是否属于二元一次方程组”“非负整数解概念的理解”“算术平方根与平方根的区别”“数的分类”“有关各类三角形高的画法”“三线八角的确定”“点到直线的距离与垂线段的关系”等,另外对于自己在复习期间出错的问题不要一概以“马虎”取而代之,一定要重视这些问题,找出问题的病根,是审题不细出错,还是计算问题,题意理解中的问题还是概念掌握的'不准确,“对症下药”才能不犯二次错误,也从中积累了一定的方法培养了自己的纠错能力。
3.提炼归纳数学方法,培养数学思想
在复习过程中,光重视知识的学习是不够的,因为在解决具体问题时出现的障碍,往往不是知识本身不够带来的,而是思想不对头造成的,所以我们要特别注意学习方法如“数形结合”“化归转化”“分类讨论”等数学思想方法,其中数形结合的思想是很常用的,如“对不等式及不等式的解集的理解”“对无理数的认识”中都有数形思想的充分体现,这种数形思想既形象,又直截了当,能给人清晰的解题思路,适于初二学生的认知特点,我们在复习的过程中可大胆适用这种思想方法。
数学作为一门应用科学,既源于社会生活,反过来又服务于社会生活。每位学生要自己去寻找,收集联系实际的数学问题,尤其是新教材更侧重的是对学生应用能力的考察。在本册中方程组与不等式有关的实际应用问题就是复习中重中之重,往往这部分内容是大多数同学感到紧张的部分,越是这样在复习中应有意识的加大力度,有的放矢地进行适当的解应用题的一般方法训练:“认真阅读,理解题意——抽象概括,建立数学模型——解决问题——解决实际问题”。
4.加强综合训练,提高解题速度
在复习的最后环节中应加强综合试题的训练,这样使各章节的内容系统化、条理化。并且在解题时间、技巧、方法上也搜集了一些经验,为期末考试做了充分的思想上的准备。
四、三轮复习第一阶段。
第一阶段是开展基础知识系统复习,即双基训练阶段。主要任务是夯实基础,完善知识框架。
(1)按章节整理
复习时可以按教材安排的先后顺序,采用图表法将有关的知识点和典型的习题一章一章地整理出来。
(2)按知识板块整理
这种方法就是打乱章节界限,采取“切大块”的方法把关系紧密的知识整理到一起。比如我们使用的《中考指要》,它的结构就划分为《数与式》、《分式和二次根式》、《方程和不等式》、《因式分解》、《函数》、《统计初步》,图形部分内容也可分为《直线型》、《三角形》、《四边形》和《圆》等四大板块。这样,可使我们的知识系统化,给记忆和运用带来方便。
(3)重点内容重点记
教材上许多重要的知识及习题结论,一定要熟记、熟用。准确记住一些重要结论和公式,做选择、填空题时既可提高正确率,又可缩短时间。例如,设等边三角形的边长为a,则它的高为?半径为?边心距为?面积为?在这五个量中,任意给一个量,都可以马上求出其余四个量。
(4)同学之间相互提高
自己整理、熟记教材知识后,想检验自己是否已达到熟练掌握的程度,同学之间可以互相提问、检测、辨析、讨论。通过彼此的提问和回答,取长补短,查漏补缺,共同提高和进步。当然不仅仅是看书整理知识,还需要做题。
总之,这一阶段应该注意这样两点:1.“读薄”教材,通读加精读,理解、识记书中的概念、定理、公式、法则,并从中概括出知识的前后联系、区别,进而在自己的头脑里形成知识的系统。2.做题。每天应有计划地做好十几道基础题。注重例题中包含的各种基本技能和技巧,找出一类问题的解题思路,进而举一反三,融会贯通。重视“双基”,抓好了第一轮复习,对尖子生的冲刺、中等生的跨档、后进生的提高,都有好处。
五、三轮复习第二阶段。
第二阶段是专题训练阶段。主要是针对热点,抓住弱点,开展难点知识专题复习,综合提高,强化冲刺。
1.多思、多问、多练。无论是跟随老师进行专题复习,还是自己针对薄弱环节进行的专题复习训练,一定要明确这个专题的主题是什么,具体有哪几类常规思路。既做到一题多解,训练发散思维,又做到多题一解,训练收敛思维。要寻找差异——因为做了大量雷同的练习,容易造成对相近试题的判断失误,这是非常危险的,也是第二轮复习时要格外注意的。
2.要抓住基础概念,将其作为技巧突破口。数学试题中的所谓解题技巧并不是什么高深莫测的东西,它来源于最基础的知识和概念,是基本知识和技能掌握到一定程度时的一种表现形式。
3.要抓住常用公式,理解其来龙去脉。这对记忆常用数学公式很有帮助。此外,还要进一步了解其推导过程,并对推导过程中产生的一些可能变化进行探究,这样做胜过做大量习题,并可使自己更好地掌握公式的运用,往往会有意想不到的效果。
4.勤练解题规范。由于新课程改革的不断深入,中考越来越注重解题过程的规范和解答过程的完整,只要是有过程的解答题,过程比最后的答案要重要得多。所以,要规范书写过程,避免“会而不对”、“对而不全”的情形。
5.要抓住数学思想,总结解题方法。中考中常出现的数学思想方法有分类讨论法、面积法、特值法、数形结合法等,运用变换思想、方程思想、函数思想、化归思想等来解决一些综合问题,掌握以二次函数为基架、一元二次方程为基架、圆为基架、三角形为基架的综合题的解题规律。在脑海中将每一种方法记忆一道对应的典型试题,并有目的地将较综合的题目分解为较简单的几个小题目,做到举一反三,化繁为简,分步突破。而在与同学的合作学习中,要将较为简单的题组合成较有价值的综合题。中考题最大的特点是浅、宽、新、活,因而,在复习中要回避繁、难、偏、怪题。训练时既要有灵活的基础题,如选择、填空,又要有一定的综合题。
六、三轮复习第三阶段。
第三阶段是综合训练阶段(模拟练习)。这一阶段是心理和智力的综合训练,也是中考复习的冲刺阶段,是整个复习过程中不可缺少的最后一环。
1.总结解题规律,巩固提高能力。跳出题海,以总结归纳为主,用理论性知识来武装自己的头脑。尽管近几年中考中综合性题目越来越灵活,但万变不离其宗。通过对解题规律的总结,对解决这类问题还是很有效的。
2.回归教材,重温基础知识和重点内容。较长时间的综合复习,教材上一些最基本的知识点、易错、易混淆的公式就被遗忘了,所以在考前的几天里一定要回归教材。首先要认真仔细阅读教材,梳理知识点。对教材上的习题要做到一看就会,一做就对。另外,以几套模拟试题为线索,查找对应知识点。
3.回顾易错处,争取拿高分。在大量的习题及模拟训练中,许多同学都有一个共同的问题,就是会做的题没有做对。这类题目往往出现在基础题中。要想减少失误,可以把做过的错题摘抄下来,分门别类,归纳总结出错的原因。然后,对症下药,以一带十,从而解决一类错题。
4.查漏补缺,提高综合解题能力。用与中考数学试题完全接轨的、符合新课程标准及命题特点和规律的、高质量的模拟试卷进行训练,每份练习独立完成,并严格按照中考要求及标准格式答题,纠正答题过程中的不良习惯。并对每次训练结果进行分析比较,既可发现问题,查漏补缺,又可积累考试经验,培养良好的应试心理素质。
各阶段复习目的不同,复习角度和方法也不相同。三轮复习不能机械重复,而是一个螺旋上升的过程。所以提醒广大学生,无论哪个复习阶段,都不可以有放松的思想。走好三个阶段,一定就有三次提高。
七、结语。
初三数学复习计划如何安排?初三数学的学习计划?初三如何计划复习数学?只有一步一个脚印,扎扎实实,做好温课备考准备,才能取得理想的成绩。在最后的复习阶段拿出饱满的情绪,积极的状态,全身心的投入到复习之中。
数学学习计划5
数学的学习有一个循序渐进的过程,妄想一步登天是不现实的。熟记书本内容后将书后习题认真写好,有些同学可能认为书后习题太简单不值得做,这种想法是极不可取的,书后习题的作用不仅帮助你将书本内容记牢,还辅助你将书写格式规范化,从而使自己的解题结构紧密而又严整,公式定理能够运用的恰如其分,以减少考试中无谓的失分。
1、按部就班:数学是环环相扣的一门学科,哪一个环节脱节都会影响整个学习的进程。所以,平时学习不应贪快,要一章一章过关,不要轻易留下自己不明白或者理解不深刻的问题。
2、强调理解:概念、定理、公式要在理解的基础上记忆。每新学一个定理,尝试先不看答案,做一次例题,看是否能正确运用新定理;若不行,则对照答案,加深对定理的理解。
3、基本训练:学习数学是不能缺少训练的,平时多做一些难度适中的练习,当然莫要陷入死钻难题的误区,要熟悉考试中的题型,训练要做到有的放矢。
4、重视平时考试出现的错误:订一个错题本,专门搜集自己的错题,这些往往就是自己的薄弱之处。复习时,这个错题本也就成了宝贵的复习资料。
考试篇
攻略一:概念记清,基础夯实。
数学≠做题,千万不要忽视最基本的概念、公理、定理和公式,特别是不定项选择题就要靠清晰的概念来明辨对错,如果概念不清就会感觉模棱两可,最终造成误选。因此,要把已经学过的六本教科书中的概念整理出来,通过读一读、抄一抄加深印象,特别是容易混淆的概念更要彻底搞清,不留隐患。
攻略二:适当做题,巧做为王。
有的同学埋头题海苦苦挣扎,辅导书做掉一大堆却鲜有提高,这就是陷入了做题的误区。数学需要实践,需要大量做题,但要埋下头去做题,抬起头来想题,在做题中关注思路、方法、技巧,要苦做更要巧做.考试中时间最宝贵,掌握了好的思路、方法、技巧,不仅解题速度快,而且也不容易犯错。
攻略三:前后联系,纵横贯通。
在做题中要注重发现题与题之间的内在联系,绝不能傻做.在做一道与以前相似的题目时,要会通过比较,发现规律,穿透实质,以达到触类旁通的境界。特别是几何题中的辅助线添法很有规律性,在做题中要特别记牢。
攻略四:记录错题,避免再犯。
俗话说,一朝被蛇咬,十年怕井绳,可是同学们常会一次又一次地掉入相似甚至相同的陷阱里。因此,我建议大家在平时的做题中就要及时记录错题,还要想一想为什么会错、以后要特别注意哪些地方,这样就能避免不必要的失分。毕竟,中考当中是分分必争,一分也失不得。
攻略五:集中兵力,攻下弱点。
每个人都有自己的软肋,如果试题中涉及到你的薄弱环节,一定会成为你的最痛。因此一定要通过短时间的专题学习,集中优势兵力,打一场漂亮的歼灭战,避免变成瘸腿。篇三:数学计划书2.数学启动阶段学习计划(60天)
考研数学复习具有基础性和长期性的特点,数学知识的学习是一个长期积累的过程,要遵循由浅入深的原则,先将知识基础打牢,构建起知识体系,然后再去追求技巧以及方法,一座高楼大厦必定是建立在坚实的地基之上,因此我们将基础知识的'复习安排在第一阶段,希望大家给予足够重视。
同时,有一个科学的学习计划,才能更迅速有效地掌握数学知识。我们按照这个原则制定了详尽的数学学习计划,使得同学们能够迅速的巩固基础知识,循序渐进,加快数学学习的步伐,为今后数学水平的提高打下一个坚实的基础。在研究生考试过程中先人一步,胜人一筹。
2.1复习书目推荐
《高等数学》上、下册第五版 同济大学应用数学系主编 高等教育出版社 《高等数学》上、下册第六版 同济大学应用数学系主编 高等教育出版社 《线性代数》第二版居余马编著 清华大学出版社
2.2学习计划
使用说明:
① 高等数学任务表中的用书为推荐教材当中《高等数学》第六版,线性代数任务表中的用书为推荐用书中的《线性代数第二版》 ② 本次计划是60天的学习任务,包括高等数学上册和线性代数的内容。
③ 每个学习任务完成时间是3天,每天的学习时间以2-3小时最佳,同学们根据自己的时间合理安排每天的学习内容。 ④ 计划里明确了每章该看的知识点、该做的习题,后面备有大纲要求,学员要根据大纲要求合理学习知识点。
同学们在复习的时候一定要和您周围的同学、老师多交流学习心得。只有您总结出来的方法才是最适合您的学习方法.
数学学习计划6
一、班级学生情况分析
我班共有学生31人,其中男生15人,女生16人。绝大部分学生家蒲塘、鲁村等行政村,有水部分学生家离学校较远。根据上学年成绩检测情况分析,学生的基础知识掌握较好,但仍有部分学生成绩不够理想,其原因主要是父母在外地打工,孩子交给爷爷、奶奶管教,学习缺乏主动性和自觉性,没有良好的学习习惯。因此,本学期重点工作除了继续加强学生的基础知识训练以外,还要加强对学困生的个别辅导及良好的学习习惯的培养,力争使学生的整体素质得到提高。
二、教材分析
这一册教材包括下面一些内容:测量、万以内的加法和减法、四边形、有余数的除法、时分秒、多位数成一位数、分数的初步认识、可能性,数学广角和数学实践活动等。
1.计算教学内容的编排体现改革的理念,注重培养学生灵活的计算能力,发展学生的数感。
2.提供丰富的空间与图形的教学内容,注重实践与探索,促进学生空间观念的发展。
3.结合现实问题教学简单的数据分析和平均数,加深学生对统计作用的.认识,逐步形成统计观念。
4.加强解决问题能力的教学,培养学生综合运用数学知识解决问题的能力。
5.有步骤地渗透数学思想方法,培养学生数学思维能力。
6.情感、态度、价值观的培养渗透于数学教学中,用数学的魅力和学习的收获激发学生的学习兴趣与内在动机。
三、教学目标和要求
1.会笔算多位数乘一位数的乘法、万以内的加法和减法,会进行相应的乘法估算和验算。
2.会口算一位数乘整十、整百、整千的数,整十、整百数乘整十数,两位数乘整十、整百数(每位乘积不满十)。
3.初步认识简单的分数,初步知道分数是平均分的含义,会读、写分数,初步认识分数的大小,会计算一些分数的加减法。
4.认识时、分、秒三个时间名词,能够很准确的说出三者之间的进制关系及三者之间的大小关系。
5.认识周长的含义,会计算四边形的周长,提醒学生注意漏写周长的单位名称。
6.认识时间单位时、分、秒,了解它们之间的关系;知道每小时是多少分钟、每分钟是多少秒组成的;并学会准确认识时间。
7.了解不同形式的可能性,知道哪些事情发生是一定的、可能的还是不可能的,进一步体会可能性在现实生活中的作用。
8.经历从实际生活中发现问题、提出问题、解决问题的过程,体会数学在日常生活中的作用,初步形成综合运用数学知识解决问题的能力。
9.初步了解的思想,形成发现生活中的数学的意识,初步形成观察、分析及推理的能力。
10.让学生体会学习数学的乐趣,提高学习数学的兴趣,建立学好数学的信心。
11.养成认真、按时、按质完成作业、书写整洁的良好习惯。
四、教学重、难点
万以内的加法和减法、四边形、有余数的除法、时分秒、多位数成一位数、分数的初步认识是本册教材的重点教学内容。
本册教材根据学生所学习的数学知识和生活经验,安排了两个数学实践活动,让学生通过小组合作的探究活动或有现实背景的活动,运用所学知识解决问题,体会探索的乐趣和数学的实际应用,感受用数学的愉悦,培养学生的数学意识和实践能力。
从本册开始引入分数的初步认识,内容比较简单。此时学生在日常生活中经常遇到或用到有关分数的知识和问题,这部分知识的学习,可以扩大用数学解决实际问题的范围,提高学生解决问题的能力;同时也使学生初步学会用简单的分数进行表达和交流,进一步发展数感,并为进一步系统学习分数及分数四则运算做好铺垫。
数学学习计划7
1、课本要“预、做、复”。
新课之前,做到先预习,把难点或不懂之处用彩笔划出,以便上课时更加注意。每节内容后面的练习自己可以先做一做,把学过的知识进行比较复习,对概念、定理、公式做出归纳、总结,加深对知识的理解,最好能把课本上的例题自己做一遍。对课本上的概念、定理、公式推理一遍,以形成对知识的整体认识。
2、上课要“听、记、练”。
把预习中存在的问题放在课堂上着重听,还需做好笔记,通过一些练习题加以巩固,通过练来减少运算中出现的错误。
3、作业要“思、问、集”。
作业一定要养成独立思考的习惯,多从不同的方法、角度入手,多从典型题目中探索多种解题方法,从中得到联想和启发。还应多树立数学解题思想:如,方程的思想、函数的思想、数形结合的思想、整体的思想、分类的思想等常用方法;对于难题,要多问几个为什么,如改变条件、添加条件、结论与条件互换,原结论还成立吗?另外,对于自己作业、试卷中出现的`错误,最好能准备一本错题集,以便今后复习中使用。做到绝不出现第二次类似错误。
暑假:
提前预习初三的重点知识内容,同学们需要在学习的过程中就将基础知识打牢,这样开学之后才能应付提高训练并未其他科目誊出学习时间。
初三上学期:
应该将初三所有知识进行深化学习和综合训练,因为期末考试综合性很强,所以同学们需要用一些时间进行期末考试的复习,争取能够在期末取得好成绩。
寒假:
开始进行第一轮系统的复习,将初中三年的所有知识回顾一遍。重视基础,不要有知识点的漏洞,适当做一些综合题检验复习成果。
初三下学期:
一模考试前,应该进行专项的复习以及攻克压轴题的强化训练,这样才能在一模考试中脱颖而出,在签约最大的浪潮中取得先机。学有余力的同学可以适当做一些新题、偏题让自己的思路更加开扩以应对一模以及之后的中考。
一模考试之后:
多做一些各区一模试题,与历年的中考真题,调整考试状态,确保简单题不要做错,在中考之前不要再一味的做难题,应该放松心态。
数学学习计划8
新一学期又到了,上学期虽然没什么好成绩,数学93,语文94.5,但也评到一个三好学生,我没什么优点,只有老实,诚实。
然而缺点一大堆,如:不爱看书,不认真听讲,胆小怕事,爱睡觉……,就是因为这些,我才会成绩下降。我非常害怕我会被父母责骂,被朋友无视我的存在。
所以我一定要在六年级阶段拼搏,我会努力地请父母支持我!我的.计划如下:
1、教师上课认真听。
2、课堂作业按时按刻去完成。
3、家庭作业要认真,不忘记。
4、不懂问题下课问。
5、计算题要认真仔细。
6、作业字迹要工整。
7、数学书要先预习,上课听的更懂。
8、数学争取好成绩。
9、配合教师要机急。
10、作业不会勤思考,实在不行问教师。
做到以上这十点,成绩优先一定行!
我一定努力学习,新学期加油!
数学学习计划9
数学的学习在我们小学生学习阶段就是我们的重点存在,大家一定会认为小学生的数学不用太过于重视就可以轻松的拿到高分数,但是小学生阶段就是打好学习基础和养成学习习惯的阶段所以小学数学学习计划对于大家的数学学习还是非常重要的。
1、按部就班:数学是环环相扣的一门学科,哪一个环节脱节都会影响整个学习的`进程。所以,平时学习不应贪快,要一章一章过关,不要轻易留下自己不明白或者理解不深刻的问题。
2、强调理解:概念、定理、公式要在理解的基础上记忆。每新学一个定理,尝试先不看答案,做一次例题,看是否能正确运用新定理;若不行,则对照答案,加深对定理的理解。
3、基本训练:学习数学是不能缺少训练的,平时多做一些难度适中的练习,当然莫要陷入死钻难题的误区,要熟悉高考的题型,训练要做到有的放矢。
4、重视平时考试出现的错误:订一个错题本,专门搜集自己的错题,这些往往就是自己的薄弱之处。复习时,这个错题本也就成了宝贵的复习资料。
数学学习计划10
一部分同学能够在初二继续保持领先,最后成为中考中的胜利者;而另一部分同学却慢慢的被拉开差距,学习兴趣和自信心受到双重打击,对于理科学习感到越来越恐惧。
学而思初中学科对于西城某重点中学的两个初三班级同学的成绩进行了分析,如下表,初一的时候大家的成绩比较集中,分数达到优秀(90分)的占80%以上,成绩最差的也在80分上下;而初二时的优秀率只有50%,有很大一部分同学只能拿到60多分;初三时还能保持优秀的同学不足30%,较差的同学在考试中已经在及格线之下。
二、领先初二下期,寒假是优秀学员的必争之地
根据很多优秀学员的学习经验,我们能够发现一些共性的东西,比如众多优秀的学员都会选择在寒假继续进行学习,从而在春季取得一定的优势。
(1)寒假的复习
寒假充裕的时间,可以利用起来把上半学期中的漏洞进行很好的弥补。如果上班学期整体学习得还不错,那么应该把重点放在三角形全等的证明上,特别是构造全等的题目,随时都不应该放松警惕,最好做到每天练习一道题目,每周做一次方法归纳。因为三角形全等在中考中占据着极其重要的地位,近五年的中考压轴题都以三角形全等和三大几何变换综合的形式呈现出来。如:20xx年北京中考的最后一题(原题如下),就考察到同学利用轴对称的思想来构造全等三角形。这个题目让很多同学在中考时都放弃作答,原因就是全等构造类题目难度可以出得很大。如果没有日积月累的经验,是很难在中考中完成这类题目的。
(2)寒假的预习
对于大多数学生来说,对于下半学期知识的提前学习比对以往知识的复习要更加重要。其原因主要可以分为以下三点:
(1)初二下期大多数学校的进度会加快,要求同学也能提前进行预习;
(2)初二下期的知识难度将进一步加大,寒假学习完初二下学期的重点内容,在学校讲课的时候就可以顺利听懂,在课外就可以进行专题训练,提前攻克期中、期末甚至于中考中的核心难点。
(3)提前学习已经成为北京初中优秀学生心中共同的秘密,而按部就班的跟随学校进度学习的同学就相对落后了。
综合以上的分析,我们便能轻易得出一个结论:要想领先初二下学期乃至初三总复习,今年的寒假必须做好规划,认真学习。
三、寒假期间,应该如何安排数学的学习内容和时间
上文中已经提到,寒假重点应该放在提前学习春季的知识上。而春季的课程中,最重要的知识有三块:一元二次方程、四边形和反比例函数,根据广大同学的学习安排,我们给出了一个25小时的数学学习规划,供同学、家长以及初二数学教师参考。
计划二:不知不觉中,这个说长不长说短不短的寒假又悄无声息的来临了,以前总感觉,放假就是自由了、解放了,可以整天出去玩,不用做作业,更没人催你写作业,所以,一到放寒暑假的时候,我就像一个无人看管的疯猴子一样,整天无所事事,光想着今天该如何玩,明天该去哪……可今年不同,我已经是六年级的学生了,不能让人笑话啊!所以,咱得定一个寒假计划书,让自己的寒假变得丰富多彩起来。
1、树立信心,努力坚持,别放弃,更不可半途而废。早晨合理安排30分钟读一读英语
2、利用上午2节课的时间分别独立完成2科寒假作业
3、中午适当午休
4、和上午一样,利用下午的时间做些寒假作业,但不可一下子贪多。要均衡、科学安排。
5、自由时间可以干一些喜欢的事情,但要控制在半小时的.时间里
6、晚饭之前是自由活动的时间,可以看电视等,但要看看新闻。
7、读一些好的小文章,写日记或是读后感,或是精彩的摘抄
8、每天学习时间最少保持在7-8小时(上课时间包括在内)
9、学习时间最好固定在:上午8:30-11:30,下午14:30-17:30;晚上19:30-21:30。
10、既不要睡懒觉,也不要开夜车。
11、制定学习计划,主要是以保证每科的学习时间为主。若在规定的时间内无法完成作业,应赶快根据计划更换到其他的学习科目。千万不要总出现计划总是赶不上变化的局面。
12、晚上学习的最后一个小时为机动,目的是把白天没有解决的问题或没有完成的任务再找补一下。
13、每天至少进行三科的复习,文理分开,擅长/喜欢和厌恶的科目交叉进行。不要前赶或后补作业。完成作业不是目的,根据作业查缺补漏,或翻书再复习一下薄弱环节才是根本。
14、若有自己解决不了的问题,千万不要死抠或置之不理,可以打电话请教一下老师或同学。每日【具体】
7:00起床
7:20洗漱完毕
7:20----7:50
:锻炼【跑步,爬山等】
8:00吃早饭
8:20---9:05做作业【第一节课】
9:15—10:00做作业【第二节课】(可以利用第一、二节课时间上家教课)
10:10---10:55复习【第一科】
11:05---11:50阅读【包括语文课外必读篇目,优美散文,作文范文等】
12:00吃午饭
12:30---13:30午休【午睡,实在睡不着的话休息会】
13:40—14:25做作业【第三节课】
14:35---15:20复习【第二科】
---------半小时自由时间【阅读,体育活动,或娱乐】---------------------------
15:50---16:35做题【做数学题,物理,化学题】(单周)【英语训练→完形填空,阅读理解等】(双周)
16:45---吃晚饭自由时间【看报纸,电视→新闻、科普类等】(此段时间不固定)
吃完饭后---21.:30进行一天的总结,检查背诵、默写等签字类作业,并背单词或古诗古文等
10:00睡觉
注:每科做作业的时间为45分钟,应高效的完成该科作业,像考试一样,若为试卷类作业,则按照试卷规定时间完成。
数学学习计划11
首先,先将寒假分为八个阶段,然后按下面计划进行,完成高等数学(上)的复习内容。
第一阶段复习计划:
复习高数书上册第一章,需要达到以下目标:
1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系。
2.了解函数的有界性、单调性、周期性和奇偶性。
3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念。
4.掌握基本初等函数的性质及其图形,了解初等函数的概念。
5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系。
6.掌握极限的性质及四则运算法则。
7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。
8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限。
9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的'类型。
10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。
本阶段主要任务是掌握函数的有界性、单调性、周期性和奇偶性;基本初等函数的性质及其图形;数列极限与函数极限的定义及其性质;无穷小量的比较;两个重要极限;函数连续的概念、函数间断点的类型;闭区间上连续函数的性质。
第二阶段复习计划:
复习高数书上册第二章1-3节,需达到以下目标:
1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系。
2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式。了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分。
3.了解高阶导数的概念,会求简单函数的高阶导数。
本阶段主要任务是掌握导数的几何意义;函数的可导性与连续性之间的关系;平面曲线的切线和法线;牢记 基本初等函数的导数公式;会用递推法计算高阶导数。
第三阶段复习计划:
复习高数书上册第二章 4-5节,第三章1-5节。需达到以下目标:
1.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数。
2.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和柯西(Cauchy)中值定理。
3.掌握用洛必达法则求未定式极限的方法。
4.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用。
5.会用导数判断函数图形的凹凸性。(注:在区间[a,b]内,设函数具有二阶导数。当 时,图形是凹的;当 时,图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形。
本阶段主要任务是掌握分段函数,反函数,隐函数,由参数方程确定函数的导数。会根据函数在一点的导数判断函数的增减性。会应用微分中值定理证明。会根据洛比达法则的几种情况应用法则求极限。掌握极值存在的必要条件,第一和第二充分条件。会计算函数的极值和最值以及函数的凸凹性。会计算函数的渐近线。会计算与导数有关的应用题[边际问题、弹性问题、经济问题和几何问题的最值]。
第四阶段复习计划
复习高数书上册第四章 第1-3节。需达到以下目标:
1.理解原函数的概念,理解不定积分的概念。
2.掌握不定积分的基本公式,掌握不定积分的性质,掌握不定积分换元积分法与分部积分法。会求简单函数的不定积分。
本阶段主要任务是掌握不定积分的性质,不定积分的公式[牢记一个函数的原函数有无穷多个,注意+C],会运用第一,第二换元法求函数的不定积分。掌握不定积分分部积分公式并应用。
第五阶段复习计划
复习高数书上册第五章第1-3节。达到以下目标:
1.理解定积分的几何意义。
2.掌握定积分的性质及定积分中值定理。
3.掌握定积分换元积分法与定积分广义换元法。
本阶段的主要任务是掌握不定积分的性质,会根据不定积分的性质做题。尤其注意积分上下限互换后积分值变为其相反数,定积分与变量无关,可根据函数奇偶性计算定积分等性质。
第六阶段复习计划
复习高数书上册第五章第4节,第六章第2节。达到以下目标:
1.掌握积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式。
2.掌握定积分换元法与定积分广义换元法。会求分段函数的定积分。
3.掌握用定积分计算一些几何量 (如平面图形的面积、旋转体的体积)。了解广义积分与无穷限积分。
本阶段主要任务是掌握积分上限函数的性质,掌握牛顿-莱布尼茨公式,应用定积分换元法求定积分。会根据定积分的几何意义计算平面图形的面积、旋转体的体积。
【数学学习计划】相关文章:
数学的学习计划08-25
数学学习计划12-27
数学学习计划08-04
初中数学学习计划07-28
初中数学复习的学习计划12-06
关于数学学习计划01-08
学生数学学习计划09-24
初中数学学习计划01-23
数学学习计划【推荐】04-04