数学学习计划

时间:2024-09-23 15:29:56 学习计划 我要投稿

数学学习计划精选15篇

  人生天地之间,若白驹过隙,忽然而已,迎接我们的将是新的生活,新的挑战,是时候开始制定计划了。相信大家又在为写计划犯愁了吧?下面是小编为大家收集的数学学习计划,欢迎大家分享。

数学学习计划精选15篇

数学学习计划1

  与其说初三数学学习计划,倒不如说初三数学复习计划,因为到了初三,数学知识基本上都已经学完,开始以复习为主,因此初三复习就要更加全面、系统而且有针对性。

  一、初三数学学习要分为四个阶段:知识模型成形阶段、专题专练阶段、综合训练阶段、查漏补缺阶段,这样层层递进复习下来,效果才会更加明显,才能达到夯实基础、强化重点、统筹兼顾、补齐短板的目的。

  二、“听一遍不如看一遍,看一遍不如做一遍,做一遍不如讲一遍,讲一遍不如辩一辩”,由此可见,主动大胆的讲、积极的'和老师同学辩论都是最佳巩固基础、提升成绩的好方法。

  三、要利用好“两本”即:课堂笔记本和错题本,从课堂笔记本上理清知识脉络,思考老师在课堂上是如何讲解的,一些数学题老师的解题思路是怎样的;从错题本上看看错在哪里,为什么会错,怎么改正,这样才能更好的深化理解、加深印象。

数学学习计划2

  一、树立整体目标

  复习的过程中,给自己树立一个整体的目标。比如通过一个假期的学习,使自己的数学成绩提高十分,或者二十分。目标定好了,接下来我们就要进行具体的分解,进行整体分析,回顾下这个学期自己哪些知识点掌握的比较好,那些比较生疏甚至不会。那么就把重点放在这些薄弱环节,如果和正方形相关的不熟练那就重点复习正方形这方面的知识,解方程不行就练习解方程。

  二、重视课本的基础知识

  任何科目的学习都万变不离其宗,数学也不例外,数学里面的这个“宗”,就是课本,因为所有的学习知识都来源于课本,考试的内容有些高于课本,但是基础知识点还是不会变化的,考试的试题就是课本知识的衍生物,要一点一点去挖掘试题背后的东西,找到其中要考试的重点部分。建议同学们在寒假期间复习数学的过程重要吃透课本的基础知识。

  三、做好练习题

  在提升数学成绩的过程中,一定要做题。数学的复习一定是要配合上做题来进行的,找一些往年期末考试的试卷做,或者自己买的资料老师发下来的试卷等等,最好是有参考答案的.,这样做完以后可以自己看看有没有错,很多的数学试卷答案只有一个答案,没有解题过程,那就可以在网上搜,或者说问同学、问老师。

  四、经常总结反思

  要想提高数学成绩,一定要具备总结性思维,并且要经常反思。做题时我们不能做了就扔,一定要学会解题后反思。如做错的题,我们是卡住哪一个步骤,为什么答案中这道题这个步骤是这么写的,为什么会用这个公式,公式的出现是为了解决什么问题等等,这些都是需要我们好好反思总结。反思题意,出题人的意图,题目牵扯到哪些知识内容;反思总结可以让我们得到方法,深刻理解知识技能的运用,这样自然做题就会越做越好。

数学学习计划3

  这次的高一数学期末考试,是全市高中统考,试卷要拿到区里统改,并要进行全区排名。为了做好复习迎考工作,使备课组活动做到有目的、有步骤地进行,与城里的'高中缩小差距,特制定如下复习计划:

  一、指导思想

  做好高一数学复习课教学,对大面积提高教学质量起着重要作用。高一数学期末复习应达到以下目的:

  (1)使所学知识系统化、结构化、让学生将一学期来的数学知识连成一个有机整体,更利于学生理解;

  (2)少讲多练,巩固基本技能;

  (3)抓好方法教学,归纳、总结解题方法;

  (4)做好综合题训练,提高学生综合运用知识分析问题的能力。

  二、明确复习范围及重点

  范围:必修1与必修4

  重点:必修1:函数的基本性质,指数函数,对数函数;必修4:三角函数,平面向量。

  三、复习要求

  1、重点复习掌握核心概念、基础知识、强调作图、解题规范;

  2、围绕综合卷加强对差生的个别辅导、面批,争取提高合格率。

  四、复习要点

  掌握各章知识结构和要点、知识点、澄清概念、解决疑难问题。

  习题归类,解题思路、方法,从解题中对知识加深理解、掌握,提高分析问题,解决问题的能力

  五、具体课时安排

  由于教学时间紧,按照计划估计要到12月31号才能结束新课,复习时间大约8天左右,巩固练习主要是让学生在课下完成,上课讲评。具体安排如下:

  20xx年元月1日前结束新课;

  六、复习方法

  1、根据学生的薄弱点,有针对,有系统地设计4份复习案,其中集合与函数2份,三角函数与平面向量2份,综合训练试卷4份。

  2、利用星期二、五早读课时间对优生进行补短,主要是补基础知识,看学生基础知识有没有记住,记住了会不会应用,再找一些基本题让学生练。

  3、时间很紧,要求我们稳扎稳打,让每一节课都高效,每节课的导学案都当堂完成,晚自习让学生处理更多的典型题。

数学学习计划4

  关键是提高听课的效率

  1、课前预习能提高听课的针对性

  预习中发现的难点是本次讲座的重点;为了减少听讲座的困难,我们可以弥补在预习中没有掌握好的旧知识。

  它有助于提高思维能力。预习之后,你可以比较和分析你所理解的与老师的解释,以提高你的思维水平。预习还可以培养自己的自学能力。第二是专心听讲。

  2、特别注意讲课的开头和结尾

  在讲座开始时,一般是总结上节课的要点,指出这节课要教的内容,这是一个连接新旧知识的纽带。最后,它往往是对课堂所学知识的总结,具有高度的概括性,是在理解的`基础上掌握这一部分知识的方法的提纲。

  此外,老师经常在课堂上对一些重点和难点做一些语言、语调,甚至一些动作。

  抓好基础

  数学练习只不过是数学概念和数学思想的结合应用。明确数学的基本概念、定理和方法,是判断问题类型和知识范围的前提,是正确掌握解题方法的基础。

  只有概念清楚,方法全面,遇到问题时,能快速得到解决问题的方法,或者面对新的练习时,能想到我们平时做的练习方法,才能快速解决。

  弄清基本定理是正确的,快速解决习题的前提条件,非凡是在复习什么章节的立体中,对基本定理熟悉而灵活掌握就能使习题解清楚,逻辑推理严密。反之,能使解题速度慢、逻辑混乱、叙述不清楚。

  制定好计划

  复习数学,想好的计划,不仅有大计划这一项,还一个小程序,以每月、每周、每日计划匹配老师的复习计划,而不是彼此冲突,如根据老师的复习计划,今天复习的知识分,今天内应该掌握的知识,加深对知识的理解,测试不同方面和不同角度研究知识。

  在每天的复习计划中,我们应该留出一些时间去看课本和笔记,复习过去的知识点,思考老师那天说了什么,总结当天所学的知识。

  可以说,日常锻炼可以少做一些,但这些归纳、反思、复习是必不可少的。我希望你在制定计划时谨慎些。

数学学习计划5

  一、时间安排

  根据假期的多少,每个人都应该把时间安排好。这个假期和以前的假期不一样,肯定要以学习为主。假期应该被视为在家上课。建议大家按照课表中的时间标准按时上课、下课。全天分为上午、下午、晚上三个时段,数学依然安排在上午。但每节课不宜过长,最多不超过1.5小时。春节假期可以放松三天,但不要长途旅行。你可以在住所周围走动,主要是为了放松。

  二、计划安排

  凡事都要有计划,这也是每个人都应该学习的一部分。寒假很短。如果没有计划,可能会在繁忙的日程中很快过去。也建议大家整合高三的课程,重新安排科目。在这里,我们应该突出我们的弱势主体。不要指望某一门学科,而是希望用这门课的成绩来弥补瘸腿的学科,这是不可能的。数学学科每天至少安排一节课,要对数学的各种知识块——函数、导数、级数、不等式、平面向量、解析几何、立体几何、概率统计等的掌握有充分的了解。,并针对自己的薄弱环节加强复习和练习。感觉困难的知识块不应该避免,但应该安排更多的时间在假期尝试克服它们。

  三、总结安排

  如何发现自己的薄弱环节,这应该是一个薄弱环节,是对老师上课给出的例题、课后做的作业、统一训练中的`考题进行总结。对于薄弱环节,首先要解决基础知识的问题,然后可以和同学讨论,问老师(学校会安排时间答疑,网校也有老师值班)。同时,做完一个题目后,要有一个反思(总结),即这个题目考查几个知识点,有哪些容易出错的地方,与之前的题目有什么相似之处,转化条件和结论是否还能做等。不是每个话题都要反思,而是每天都要反思。这个过程就是提高能力的过程。

  四、错误的积累

  积累数学错题是提高成绩的重要途径。事实上,我们可以通过减少错误来取得好成绩。这里提到的错题,应该是那些可以做而做错的题。积累问题时,也要写下错误的原因(概念、考试、计算、写作等)。),定期看错题,看能不能做对一次。每次考试前,把错题再看一遍。考试时不要犯同样的错误。如果你能在错过的问题中出错,你就能得到一个非常好的问题。这就需要大家认真整理自己做过和通过的试卷,尤其是出错的原因,这是回到总结。

  五、任务安排

  放假的时候,老师肯定会留一些作业,所以不要催这些作业,更不要忽视。作业可以用来检验总结和复习的效果。每天做点什么。如果作业太多,可以先解决基础题(选题填题),综合题可以后做。假期每周都要做一套完整的试卷(老师可以整理历年高考试题),用这些试题来保持自己的状态——做题的状态。

数学学习计划6

  常言道:“凡事预则立,不预则废”,新的一个学期的到来,几门新功课来到了我们的面前,需要我去探索去研究,为了更好地学习贯彻新知识,获得长足的进步,我特此制定一份数学学习计划。

  争取获得优良成绩,能切实在大学里学到丰富的.专业知识和基础常识。增加文化素养,提升自身能力,端正学习态度,培养积极勤奋的学风。做学习计划来自我敦促,自我勉励。

  一、具体安排

  1、坚持预习,坚持在上课前先预习一遍课文,在上课之前对所上的内容有所了解,能提高听课效率。并且在老师上完一章的内容后,能够主动复习。温故而知新。

  2、每周早上起来背公式。

  3、每周坚持在家里自习。

  4、坚持去校图书馆借书阅书,坚持完成老师布置的作业,并且做好读书笔记,时时复习。

  5、对于课程知识,要多想多问,并且把其中有收获的部分记入笔记之中,常常翻阅。

  6、每个月进行一次数学学习清算,反思自己这个月是否达成了学习计划,有哪一些做得不足的地方,下个月要注意改进。

  1、注意力完全集中的状态是否只能保持10至15分钟。

  2、学习时,身旁是否常有小说、杂志等使我分心的东西。

  3、学习时是否常有想入非非的体验。

  4、是否常与人边聊天边学习。

  三、学习兴趣问题

  (1)是否一见数学书头就发胀。

  (2)是否只喜欢自己喜欢的课,而不喜欢数学。

  (3)是否常需要强迫自己学习。

  (4)是否从未有意识地强化自己的学习行为。

  这都是要靠自己自觉的,也许很多人都会因此放纵自己,但是我们要坚信,如果在高一中没有养成好的学习习惯,那么我们的时间就等于是浪费了的,这是人生的黄金时光,我们应该努力多学点东西。因此坚决执行此计划,鼓励自己,学有所成!

数学学习计划7

  离散数学是计算机学科的专业基础课程,它对学生计算机科学理论水平的提高起着非常重要的作用。但是,在该课程的学习过程中,学生对离散数学的重要性以及与其它课程的联系似乎是雾里看花,模糊不清。当然,这是很自然的事情,因为处在现有的知识结构中,学生不可能对所学的知识具有全面和深刻的认识,就象古诗中描述的那样:“不识庐山真面目,只缘身在此山中”。处在一个环境中难以看清该环境中的一切事物是很正常的。所以,在学习离散数学的过程中,学生不必过分关注它的用处以及它在计算机学科中所起的作用,而应从以下几个方面入手,力争学好本课程的全部内容:

  1、从严格的数学定义出发建立概念

  离散数学的每一个概念都是由定义给出的,分析定义,弄清定义所给出的概念是非常重要的,是初学者的首要任务。离散数学中的定义往往从严格的数学角度出发进行描述,是某种概念的高度抽象。它与高等数学中的某些带有直观性的定义相比更具严格化。因此,一定要站在严格的数学角度上去理解离散数学的定义,建立严格的数学概念。

  2、重视数学性质和证明过程

  数学概念的讨论一般建立在这些概念所具有的性质之上,性质的研究是对数学概念讨论的进一步深入,往往通过命题、定理、推论等形式研究抽象概念的特性。充分理解数学概念性质的.方法是完全弄懂该性质的证明过程,这不仅是学习数学知识的过程,也是增强抽象思维能力,培养逻辑严密程度的重要途径。数学定理的证明是一项困难和枯燥的工作,初学者往往因畏惧其难度而放过许多证明的细节,这是非常不可取的。因为读懂证明过程的每一步不仅是掌握知识的重要环节,而且还是培养各种能力的有效途径。证明技巧的训练,可以促进推理技能的提高、逻辑抽象的深入、思维方式的严谨和理解能力的增强。当然,这需要一个长期训练的过程,不可能立杆见影,希望通过个别定理的证明而达到提高各种能力的想法是不现实的。所以,重视每一个性质以及它的证明过程是非常重要的。

数学学习计划8

  暑期是查漏补缺的黄金时期,也是想在学习上逆袭的最佳时间。特别是对于初二升初三的时候,更应该很好的利用这个暑假,为初三的紧张复习状态做好充分的准备。

  (一)把初二知识巩固好

  从知识角度来看,初二的内容是中考的重中之重,中考题经常有xx的综合题。因为刚学过,多数知识点还熟悉,要在此基础上提高到(或接近)中考要求,相对来说比较容易。有些学校在初三第一学期就开始做模拟试卷,如果能掌握好初二知识,会做得更好,这对以后的学习有促进作用,能帮助你形成良性循环。

  (二)注重归纳总结

  平时在校由于作业多,无暇静下来做些归纳总结工作,而这对能力的.提高会有很大的帮助。总结可以按章节,也可以按知识点。比如对曲线一章可按如下进行:

  (1)基本概念:曲线和方程定义及应用、圆锥曲线的定义及标准方程、直线和圆锥曲线的位置关系等。

  (2)基本题型的常见解法、特殊解法,如求两圆相交弦所在直线的方程,若求交点,不仅计算繁而且还会出现运算错误,用曲线系方程则很简单。

  (3)易错问题剖析。

  (4)本章涉及哪些数学思想方法。对思想方法的归纳要通过具体例子来实现,比如中点弦问题,涉及弦长,则用韦达定理,不涉及弦长,则用点差法。

  (三)弥补薄弱环节

  在某章节学得不太好,可以集中时间补一下。首先要理解基本概念,记住公式和定理,千万不要一边看公式一边做题目,这样效果不好,要通过做题记住公式。其次要做熟常见的题型,并掌握其变式,要注意解题方法的总结,做题不要追求多,而要追求解题质量,提高效率。第三要特别重视定义的运用,还有努力把会做的题做对,很多同学丢分相当严重,平时都认为是粗心,其实不尽如此,是多方面原因造成的,应及早找出原因,尽快改正。

  (四)腾出时间挑战新题

  做题只是做一些老师讲过或是会做的题目,这类题目多是巩固性的,反复操练没有太大必要。要能腾出时间去做一些相对比较新的题目,这些题不一定难,但是以前自己没见过的问题,可以多花些时间从各个不同的角度去思考,这里不仅关心结果,更关注过程,这样的心理体验是必须经历的,它有助于初三阶段综合能力的提高。

  (五)做些开发思维的题目

  学校在放假前就发了初三的复习用书,要求学生在暑假做甚至要求做完。暑假可做些思维容量大的开发性问题,它最终会使我的能力得到提高,对我以后无论做什么类型的题都会有帮助。

  各位即将参加中考的同学们,好好规划你的暑假,为你的中考复习做足最充分的准备吧!

数学学习计划9

  一轮复习:

  数学的第一轮复习开始于寒假,复习主要内容为绝大部分中考大纲中要求的考点:三角形、四边形、圆、方程与不等式、一次函数、反比例函数、二次函数等。题目选在中考及模拟考试中出现过的经典题目,或予以改编加工,其目的为回顾初中三年的知识点,复习和巩固基础知识及解题方法。目标为基础、中档题目零失分,在开学测试中取得优异成绩!

  二轮复习:

  春季班的前九次课为第二轮复习的时间,此轮复习以攻克各类常考专题为主,主要包括函数图象点的存在性专题、图形运动及变换专题、代数综合应用专题、几何变换专题及探究性题目专题、中考易错专题等等。选题以能够凸显专题特点的题目为主、题目循序渐进,并附加高端模型的总结及解题思路的扩展,力争攻克第一次模拟考试。

  三轮复习:

  第三轮复习将蕴含在春季班的后三讲进行,代数综合、几何综合以及代几综合将成为此轮复习的主要复习对象。题目难度及形式参照20xx年北京市各区一模考试的`题目进行编纂。以剖析题目、联系知识、寻找模型和方法为主线进行压轴题目的分析与解答。争取在二模考试中解决压轴题,获得高分或满分。

  四轮复习:

  历经了一模和二模之后,第四轮复习便会悄然而至,此轮复习或以短期班的形式为呈现,通过对两轮复习多体现出来的中考趋势进行分析,并以此进行选题和预测中考。所选题目同历年中考考察可能性较大的题目相同,以便最大程度的使学子适应新的中考趋势、做好考前的最后冲刺!

  基础巩固--专题攻克--压轴突破--趋势预测及查漏补缺,历经四轮复习稳扎稳打,步步为营,知识体系由点及面、重点突出。一轮复习对接开学测试,二轮复习对接一模考试,三轮复习对接二模考试,最后四轮冲刺复习目标20xx中考!

数学学习计划10

  第一,要早知道一年的任务——科学安排时间

  如果我们对各科的复习制定一个可行的计划,我们成绩的提高将指日可待。复习有长期、中期、短期安排。长期认同老师的安排,也就是整体进步跟着老师走。

  数学方面,中期安排主要围绕几个分支:函数、三角形、数列、不等式、解析几何、立体几何。其中函数(包括不等式)、数列、解析几何最为重要。第一轮复习要注意各个分支的有机结合,综合程度要根据自己的实际情况来确定。普通中学的学生可以暂时避开综合程度高的难题,先掌握基本内容。近几年来,两种教材并行考查相对容易。

  短期安排就是以章为单位或者以周为单位制定一个可行的计划。有时候计划可以安排每天做什么,任务要具体明确,可操作性强。计划结合老师最近的.安排,跟着老师的节奏,在完成老师布置的作业后,突破自己薄弱环节的重点(比如记住忘记的公式,熟练掌握不熟悉的方法)。在第一轮复习中,一定要扎实掌握基本概念、解决一类问题的基本方法等。

  第二,计划的关键是执行——提高学习效率。

  每个人都知道“春天是一年中最重要的时刻”的意思。九月是新高三学生的关键时期,要适应高三快节奏、重负荷的学习生活。

  “双基”落实到位。即要掌握各章节的基本概念,常见问题的解决方法,以及相应的技巧。有些同学之所以“一看就懂,一看就错”,就是因为在这方面做得不好。在课堂上,我们不仅要和老师同步思考,还要努力和老师同步或比老师更快地算出正确答案。理解是不够的,远远谈不上掌握知识,形成能力。要知道“纸上谈兵很容易,但必须自己动手”。

  在有限的时间内做作业。给自己设定时间做作业,像考试一样“进入状态”,也遵循先易后难的原则。遇到难题要认真思考,但一时做不到也要学会“放弃”。老师发现自己不会做或者改错很多都会集体点评。提倡“做后满分”,就是错题要认真改。你不妨准备一个错题集,写下错误的原因,以后再复习,尽量不犯同样的错误。一些学生做作业时没有时间观念。他们一边做题一边看公式,甚至互相核对答案。这种作业不能反映实际水平。一旦考上了,眼高眼低。要么是速度慢,要么是计算错误多。应该会引起一部分同学(尤其是中等水平以下的同学)的注意。

  减少低级错误。低级错误导致“是而不是”或“是而不是”,是部分学生分数上不去的主要原因。大部分是因为考试计算失误、考试紧张等心理因素造成的。这些问题很容易被“粗心大意”的表象所掩盖。事实上,经常粗心是一种坏习惯。我们必须充分认识到它的危害性,并尽力克服它。

数学学习计划11

  学习教材:高等数学上、下册(同济大学数学系编,第六版),线性代数(同济大学数学系编,第五版),概率论与数理统计(浙江大学盛骤编,第四版)

  学习时间:3月份-6月份

  学习目的:通过对整个课本的全称学习,掌握考研数学的考点内容

  学习方法:参加领航教育的基础导学课程,可以通过导学课程掌握考研复习的学习方法。概念部分:一定要记准了概念,有许多选择题就是由概念引深出来的或者是直接的概念题,并且要理解。公式部分:自己准备个单独的小笔记,把高数、线代、概率里面所有的公式都要整理出来,不是从课本上抄下来,是结合自己的理解来记忆并能灵活的运用。自己要有一个错题集和经典题集,专门用来收集自己错过的经典的题,并标注好知识点。

  学习计划:

  一、3月24号上午9:00----11:00

  不定积分

  1.原函数、不定积分的概念;

  2.不定积分的基本公式,不定积分的性质,不定积分的换元积分法与分部积分法;

  3.会求有理函数和简单无理函数的积分.

  定积分

  1.定积分的概念和性质,定积分中值定理;

  2.定积分的换元积分法与分部积分法;

  3.积分上限的函数的概念和它的导数,牛顿-莱布尼茨公式;

  4.反常积分的概念与计算;

  5.用定积分计算平面图形的面积、旋转体的体积,函数的平均值.

  :本章的基础课后习题

  二、3月31号上午9:00----11:00

  微分方程

  1.微分方程及其阶、解、通解、初始条件和特解等概念;

  2.变量可分离的微分方程及一阶线性微分方程的解法;

  3.齐次微分方程的解法;

  4.线性微分方程解的性质及解的结构;

  5.二阶常系数齐次线性微分方程的解法;

  6.会解自由项为多项式、指数函数、正弦函数、余弦函数的二阶常系数非齐次线性微分方程.

  作业:本章的基础课后习题

  三、4月7号上午9:00----11:00

  来总部阶段测评

  四、4月14号上午9:00----11:00

  多元函数微分学

  1.二元函数的概念与几何意义;

  2.二元函数的极限与连续的概念,有界闭区域上连续函数的性质;

  3.多元函数偏导数和全微分的概念,全微分存在的必要条件和充分条件,全微分形式的不变性,会求全微分;

  4.多元复合函数一阶、二阶偏导数的求法;

  5.隐函数存在定理,计算多元隐函数的偏导数;

  6.多元函数极值和条件极值的概念,二元函数极值存在的必要条件、充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值.

  作业:本章的基础课后习题

  五、4月21号上午9:00----11:00

  重积分

  1.二重积分的概念和性质,二重积分的中值定理;

  2.会利用直角坐标、极坐标计算二重积分.

  级数

  1.常数项级数收敛、发散以及收敛级数的和的概念,级数的基本性质及收敛的必要条件;

  2.几何级数与级数的收敛与发散的条件;

  3.正项级数收敛性的比较判别法和比值判别法;

  4.交错级数和莱布尼茨判别法;

  5.任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系;

  6.函数项级数的收敛域及和函数的概念;

  7.幂级数的收敛半径、收敛区间及收敛域的求法;

  8.幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求一些幂级数在收敛区间内的和函数;

  9.函数展开为泰勒级数的充分必要条件;

  10.,,,及的麦克劳林(Maclaurin)展开式,会用它们将一些简单函数间接展开为幂级数.

  作业:本章的基础课后习题

  六、4月28号上午9:00----11:00

  行列式

  1.行列式的概念和性质,行列式按行(列)展开定理.

  2.用行列式的性质和行列式按行(列)展开定理计算行列式.

  3.用克莱姆法则解齐次线性方程组.

  作业:本章的基础课后习题

  对角行列式、上(下)三角形行列式值的结论需要记住,以后直接使用,熟记范德蒙行列式的特点与计算公式

  七、5月5号上午9:00----11:00

  矩阵

  1.矩阵的概念,单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵的概念和性质.

  2.矩阵的线性运算、乘法运算、转置以及它们的运算规律.

  3.方阵的幂与方阵乘积的行列式的`性质.

  4.逆矩阵的概念和性质,矩阵可逆的充分必要条件.

  5.伴随矩阵的概念,用伴随矩阵求逆矩阵.

  6.分块矩阵及其运算

  作业:本章的基础课后习题

  八、5月12号上午9:00----11:00

  总部考试

  九、5月19号上午9:00----11:00

  向量与线性方程组

  1.齐次线性方程组有非零解的充分必要条件,非齐次线性方程组有解的充分必要条件.

  2.齐次线性方程组的基础解系、通解及解空间的概念,齐次线性方程组的基础解系和通解的求法.

  3.非齐次线性方程组解的结构及通解.

  4.用初等行变换求解线性方程组的方法.

  5.维向量、向量的线性组合与线性表示的概念

  6.向量组线性相关、线性无关的概念,向量组线性相关、线性无关的有关性质及判别法.

  7.向量组的极大线性无关组和向量组的秩的概念和求解.

  8.向量组等价的概念,矩阵的秩与其行(列)向量组的秩之间的关系.

  作业:本章的基础课后习题

  十、5月26号上午9:00----11:00

  矩阵的特征值和特征向量

  1.内积的概念,线性无关向量组正交规范化的施密特(Schmidt)方法.

  2.规范正交基、正交矩阵的概念以及它们的性质.

  3.矩阵的特征值和特征向量的概念及性质,求矩阵的特征值和特征向量.

  4.相似矩阵的概念、性质,矩阵可相似对角化的充分必要条件,将矩阵化为相似对角矩阵的方法.

  5.实对称矩阵的特征值和特征向量的性质.

  作业:本章的基础课后习题

  二次型

  1.二次型及其矩阵表示,二次型秩的概念,合同变换与合同矩阵的概念,二次型的标准形、规范形的概念以及惯性定理.

  2.正交变换化二次型为标准形,配方法化二次型为标准形.

  3.正定二次型、正定矩阵的概念和判别法.

  作业:本章的基础课后习题

  十一、6月2号上午9:00----11:00

  考试

  十二、6月9号上午9:00----11:00

  随机事件和概率

  1.样本空间(基本事件空间)的概念,随机事件的概念,事件的关系及运算.

  2.概率、条件概率的概念,概率的基本性质.

  3.会计算古典型概率和几何型概率.

  4.概率的五大公式:加法公式、减法公式、乘法公式、全概率公式、贝叶斯(Bayes)公式.

  5.事件独立性的概念与计算.

  作业:本章的基础课后习题

  随机变量及其分布

  1.随机变量的概念,分布函数的概念及性质.

  2.独立重复试验的概念与有关事件概率的计算.

  3.离散型随机变量及其概率分布的概念,几种常见的离散型随机变量:0-1分布、二项分布、几何分布、超几何分布、泊松(Poisson)分布.

  4.连续型随机变量及其概率密度的概念,几种常见的连续型随机变量:均匀分布、正态分布、指数分布.

  5.随机变量函数的分布.

  作业:本章的基础课后习题

  十三、6月16号上午9:00----11:00

  多维随机变量及分布

  1.多维随机变量的概念,多维随机变量的分布的概念和性质.

  2.二维离散型随机变量的概率分布、边缘分布和条件分布.

  3.二维连续型随机变量的概率密度、边缘密度和条件密度.

  4.随机变量的独立性及不相关性的概念,随机变量相互独立的条件.

  5.二维均匀分布,二维正态分布的概率密度,求理解其中参数的概率意义.

  6.两个随机变量简单函数的分

  作业:本章的基础课后习题

  十四、6月23号上午9:00----11:00

  考试

  十五、6月30号上午9:00----11:00

  随机变量的数字特征

  1.随机变量数字特征:数学期望、方差、标准差、矩、协方差、相关系数的概念.

  2.会运用数字特征的基本性质,并掌握常用分布的数字特征.

  3.随机变量函数的数学期望.

  4.切比雪夫不等式.

  作业:本章的基础课后习题

  大数定律和中心极限定理

  1.切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律).

  2.棣莫弗-拉普拉斯定理(二项分布以正态分布为极限分布)和列维-林德伯格定理(独立同分布随机变量序列的中心极限定理)

  作业:本章的基础课后习题

  样本及抽样分布

  1.总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念.

  2.分布、分布和分布的概念及性质,上侧分位数的概念并会查表.

  3.正态总体的常用抽样分布.

  作业:本章的基础课后习题

  矩估计和最大似然估计

  1.参数的点估计、估计量与估计值的概念.

  2.矩估计法(一阶矩、二阶矩)和最大似然估计法.

  作业:本章的基础课后习题

  7月1号到20号,自己将学习过程中得重点难点整理到笔记上,然后把练习时做过的错题重新做一遍,并把对应的知识点复习一遍,以便暑期能跟上强化班的进度。

  7月底到8月中旬:暑假强化班

  学习难点:可能第一遍复习完,老师刚讲过的题当时听明白了,课下回去做得时候还是没有思路或者出错,这是很常见的现象,这时候要把知识点定位,然后回想老师对知识点的解说,或者看看课本例题,一定不要浮躁,要理解知识点,不只是套公式,灵活的运用。

数学学习计划12

  学生主要是以预习初一下学期内容为主,以便对下个学期进一步的学习数学知识有一个更明确的把握,了解数学学习的连贯之处。通常初一学生刚刚从小学进入初中,还不太适应初中的学习方式。小学阶段,学生主要以模仿式学习为主,而进入中学后则完全不一样,要求学生必须要学会自己独立学习,独立思考。

  初一学生往往不善于课前预习,也不知道预习起什么作用,预习仅是流于形式,草草看一遍,看不出什么问题和疑点。

  那到底该如何预习呢?预习的步骤有哪些呢?

  一粗读,先粗略课文浏览教材的有关内容,大致了解相关内容,掌握本书知识的'基本框架,同时了解新课的重点和难点。

  二细读,对重要概念、公式、法则、定理反复阅读、仔细体会、认真思考,注意知识的发展形成过程,对难以理解的概念作出标记,以便新学期上课时带着问题听课效率更高。通过课前预习能够使学生知道那些地方容易,哪些地方难,会使今后的听课变得更有针对性,注意力更集中,从而提高了听课的效率。大量的事实证明,养成良好的预习习惯,能使孩子从被动学习转为主动学习,同时能逐步培养孩子的自学能力。有了自学能力,就好比掌握了打开知识宝库的钥匙,就能源源不断的获取新知识,汲取新的营养。

  细心地挖掘概念和公式

  很多同学对概念和公式不够重视,这类问题反映在三个方面:

  一是,对概念的理解只是停留在文字表面,对概念的特殊情况重视不够。例如,在单项式的概念(数字和字母积的代数式是单项式)中,很多同学忽略了“单个字母或数字也是单项式”。

  二是,对概念和公式一味的死记硬背,缺乏与实际题目的联系。这样就不能很好的将学到的知识点与解 题联系起来。

  三是,一部分同学不重视对数学公式的记忆。记忆是理解的基础。如果你不能将公式烂熟于心,又怎能够在题目中熟练应用呢?

数学学习计划13

  期末考完之后能做什么?这是每个学生和家长都想问的问题。每次大考,总是会给学生带来很大的触动,很多人开始懂得了要好好学习,很多人通过考试发现了自己的不足,大多数人只有在这个时候才显得认识很“深刻”。而寒假恰好是一个查漏补缺的最佳时机。高三上半学期结束之后,多数学校高中阶段的数学知识就已经全部学完,并且进行了第一轮的复习,有的学校甚至开始第二轮复习。

  那么,在高中的最后一个寒假,高考生应如何做好数学这一重要科目的复习呢?

  对于今年高考数学科目的难易程度,整套考卷的难易比例分配不会有变化,还是7:2:1,但今年的整体难度可能会比往年大一点儿,因为去年和前年的高考题相对比较简单。20xx年高考试题的难度总体上不会有大的变化,高考试题的策划和设计上同样不会有较大的变化,将继续体现大纲卷向课改卷的.平稳过渡。

  高三学生的寒假时间虽然比较短,但是同样要制订好学习计划,而且最好针对每一科都有详细的计划。

  就数学这一科来说,查漏补缺是最为重要的,寒假的数学复习,要针对每位学生的实际,全面落实考点,构建知识网络,掌握高考数学的知识体系,对没学好的章节内容各个击破,补全补牢不透彻的知识点;再就是学习好各种解题技能技巧,拓展解题思路,理清数学方法在解题中的应用。

  复习以往的错题也是寒假数学复习的重要方法。

  抽出一点时间,将平时各类大大小小考试的卷子都拿出来,把错误的题目再订正一遍,最好把错题分类整理在一个错题本上。有些同学会觉得麻烦,实际上,当你一道错题整理出来后,你会发现比你匆忙地去做10道题效果更好。高三学生一定要珍惜“错误”,弄清错误的原因。因为只有牢固掌握基础知识、基本方法,才能获得数学学习的通解和通法。而在明确解题思路的错误后,才能真正巩固所学的知识。

  高考数学科目中,占比最大的仍然是基础知识。包括优秀学生在内的任何一个学生,其复习质量高低的关键都在于是否切实抓好基础。函数、不等式、数列、三角、立体几何中的空间线面关系、解析几何中的曲线与方程是高中数学的主干知识,也是高考的重点,这些地方有明显漏洞必须首先弥补。抓基础不是把书上的结论看一遍,高三复习仍要强调理解知识的来源及其所蕴含的数学思想、数学方法,把握知识的横纵联系,在理解的基础上实现网络化并牢固熟练地记忆。抓基础离不开做题,要通过解题的思考过程(解题中模糊想法的澄清,不同想法的比较分析)并结合解题研读课本,深入理解基础知识。

  做题是很多学生喜欢的复习方法,但是此时不应再盲目做题,需要重质而不是重量。

  高考数学考试的一个特点是研究题目就可以获得解题的方法,所以不建议高三学生在寒假期间再做模拟题,而应该在寒假期间对最近几年的真题进行分析研究,总结出一些解题的方法。对于平时数学成绩较好的学生来说,学会总结学习的思维,做到快速解题,把所有的题目固定成一种思维,同时总结出变型的主要原则。对于平时数学成绩不太理想的学生来说,这个时候还是应以课本知识点理解为主,在做历年的真题时,结合课本看哪些方面是没有掌握的,根据题目把课本上涉及的知识点标出来。看看这些知识点在应用的时候有何先决条件,知识点如何反向应用,具体的解题过程中在何处卡壳。

  希望高三的学生在计划中订立短期目标与长期目标,短期目标就是每天熟记5至10个常用公式,做5道例题,一套综合卷子等;长期目标则是双基考试、一模考试、二模考试、高考中能取得什么样的进步。

数学学习计划14

  1、针对自己的薄弱学科的学习态度、学习方法、学习目标进行反思,调整。

  2、在家长的指导下,写好自己切实可行的暑假生活、学习计划。(安排好每天复习进度的明细内容)

  3、把练习卷上做正确的题目进行整理,确认自己已经掌握了哪些知识,具备了哪些运用能力,树立自己对本学科的信心。

  4、把练习卷上做错的题目进行整理、抄录,打开教科书,逐题进行分析,找到错误的关键之处,进行认真的订正后,再到教材上找到相关类型的题目,进行练习、强化。(尽可能用自己的力量解决问题)

  5、遇到无法解决的困难,按教科书的'学习顺序进行梳理罗列。了解自己学习问题的共性薄弱点,然后可以请老师一起帮助解决。

  6、每周二次带着学科的不懂之处和老师一起分析、解决问题。回家后运用老师解决问题的方法进行自我强化练习,填补自己的学习漏洞。(这一点必须按照教材由浅入深的学习顺序,切不可东一榔头西一棒的无序)

  7、每次完成习题的订正,将错题订正的全过程,牢牢地记在脑海里(背出),渐渐地形成解题方法的量的积累。

  8、一星期打两次球,游三次泳,增加运动,提高体能。(也可以听音乐等,做自己有兴趣的事)

  9、一星期跟着父母学做两次家常菜,如炒茄子,蒸鱼之类,再做一些力所能及的家务。

数学学习计划15

  一、第一阶段复习计划

  复习高数书上册第一章,需要达到以下目标:

  1、理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系。

  2、了解函数的有界性、单调性、周期性和奇偶性。

  3、理解复合函数及分段函数的概念,了解反函数及隐函数的概念。

  4、掌握基本初等函数的性质及其图形,了解初等函数的概念。

  5、理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系。

  6、掌握极限的性质及四则运算法则。

  7、掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。

  8、理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限。

  9、理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。

  10、了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。

  本阶段主要任务是掌握函数的有界性、单调性、周期性和奇偶性;基本初等函数的性质及其图形;数列极限与函数极限的定义及其性质;无穷小量的比较;两个重要极限;函数连续的概念、函数间断点的.类型;闭区间上连续函数的性质。

  二、第二阶段复习计划

  复习高数书上册第二章1—3节,需达到以下目标:

  1、理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系。

  2、掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式。了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分。

  3、了解高阶导数的概念,会求简单函数的高阶导数。

  本周主要任务是掌握导数的几何意义;函数的可导性与连续性之间的关系;平面曲线的切线和法线;牢记基本初等函数的导数公式;会用递推法计算高阶导数。

  三、第三阶段复习计划

  复习高数书上册第二章4—5节,第三章1—5节。需达到以下目标:

  1、会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数。

  2、理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和柯西(Cauchy)中值定理。

  3、掌握用洛必达法则求未定式极限的方法。

  4、理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用。

  5、会用导数判断函数图形的凹凸性。(注:在区间[a,b]内,设函数具有二阶导数。当时,图形是凹的;当时,图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形。

  本周主要任务是掌握分段函数,反函数,隐函数,由参数方程确定函数的导数。会根据函数在一点的导数判断函数的增减性。会应用微分中值定理证明。会根据洛比达法则的几种情况应用法则求极限。掌握极值存在的必要条件,第一和第二充分条件。会计算函数的极值和最值以及函数的凸凹性。会计算函数的渐近线。会计算与导数有关的应用题[边际问题、弹性问题、经济问题和几何问题的最值]。

  四、第四阶段复习计划

  复习高数书上册第四章第1—3节。需达到以下目标:

  1、理解原函数的概念,理解不定积分的概念。

  2、掌握不定积分的基本公式,掌握不定积分的性质,掌握不定积分换元积分法与分部积分法。会求简单函数的不定积分。

  本周主要任务是掌握不定积分的性质,不定积分的公式[牢记一个函数的原函数有无穷多个,注意+C],会运用第一,第二换元法求函数的不定积分。掌握不定积分分部积分公式并应用。

  五、第五阶段复习计划

  复习高数书上册第五章第1—3节。达到以下目标:

  1、理解定积分的几何意义。

  2、掌握定积分的性质及定积分中值定理。

  3、掌握定积分换元积分法与定积分广义换元法。

  本周的主要任务是掌握不定积分的性质,会根据不定积分的性质做题。尤其注意积分上下限互换后积分值变为其相反数,定积分与变量无关,可根据函数奇偶性计算定积分等性质。

  六、第六阶段复习计划

  复习高数书上册第五章第4节,第六章第2节。达到以下目标:

  1、掌握积分上限的函数,会求它的导数,掌握牛顿—莱布尼茨公式。

  2、掌握定积分换元法与定积分广义换元法。会求分段函数的定积分。

  3、掌握用定积分计算一些几何量。了解广义积分与无穷限积分。

【数学学习计划】相关文章:

数学学习计划12-27

数学寒假学习计划11-20

数学学习计划08-04

数学复习学习计划05-21

数学学习计划10-30

初中数学复习的学习计划12-06

寒假数学学习计划12-06

初中数学学习计划01-23

数学学习计划范文05-29

数学学习计划【推荐】09-03