高考数学二轮复习线性规划知识要点总结

时间:2022-11-29 06:54:21 高考数学 我要投稿
  • 相关推荐

2018高考数学二轮复习线性规划知识要点总结

  简单的线性规划问题是高考的热点之一,是历年高考的必考内容,主要以填空题的形式考查最优解的最值类问题的求解,高考的命题主要围绕线性规划知识要点有以下几个方面:

2018高考数学二轮复习线性规划知识要点总结

  (1) 常规的线性规划问题,即求在线性约束条件下的最值问题;

  (2) 与函数、平面向量等知识结合的最值类问题;

  (3) 求在非线性约束条件下的最值问题;

  (4) 考查线性规划问题在解决实际生活、生产实际中的应用。而其中的第(2)(3)(4)点往往是命题的创新点。

  【例1】 设函数f()=?3?sin?+??cos?,其中,角的顶点与坐标原点重合,始边与x轴非负半轴重合,终边经过点?P(x,y)?,且0?。

  (1) 若点P的坐标为12,32,求f()的值;

  (2) 若点P(x,y)为平面区域:x+y1,y1。 上的一个动点,试确定角的取值范围,并求函数f()的最小值和最大值。

  分析 第(1)问只需要运用三角函数的定义即可;第(2)问中只要先画出平面区域,再根据抽画出的平面区域确定角的取值范围,进而转化为求f()=a?sin?+b?cos?型函数的最值。

  解 (1) 由点P的坐标和三角函数的定义可得?sin?=32,?cos?=12。

  于是f()=3?sin?+??cos?=?332+12=2。

  (2) 作出平面区域 (即三角形区域ABC)如图所示,其中A(1,0),B(1,1),?C(0,1)?。于是0?2,

  又f()=3?sin?+?cos?=2?sin?+??6,

  且?+???2??3,

  故当+??2,即=??3时,f()取得最大值,且最大值等于2;

  当+??6,即=0时,f()取得最小值,且最小值等于1。

  点评

  本题中的最大的亮点在于以解答题的形式将线性规划中的基础内容平面区域与三角函数的求值进行了的有机综合,过去历年高考对线性规划考查中并不多见。

【高考数学二轮复习线性规划知识要点总结】相关文章:

高考数学二轮复习要点12-08

高考物理二轮复习的要点12-09

高考数学的复习要点12-09

高考数学二轮复习重点知识12-09

高考数学首轮复习要点12-09

高考数学复习注意要点12-09

有关高考数学第二轮复习:抓基础要点参考12-09

高考数学冲刺阶段复习要点12-09

高考政治二轮复习知识重点及策略12-09