- 相关推荐
高考数学答题的三种题型
高考数学答题技巧精选:常见的三种题型,供考生参考。
“答题模板”就是首先把高考试题纳入某一类型,把数学解题的思维过程划分为一个个小题,按照一定的解题程序和答题格式分步解答,即化整为零.强调解题程序化,答题格式化,在最短的时间内拟定解决问题的最佳方案,实现答题效率的最优化.
模板1 三角变换与三角函数的性质问题
已知函数f(x)=2cos x·sin-sin2x+sin xcos x+1.
(1)求函数f(x)的最小正周期;(2)求函数f(x)的最大值及最小值;(3)写出函数f(x)的单调递增区间.
审题路线图 不同角化同角→降幂扩角→化f(x)=Asin(ωx+φ)+h→结合性质求解.
规 范 解 答 示 例 构 建 答 题 模 板 解 f(x)=2cos x-sin2x+sin xcos x+1
=2sin xcos x+(cos2x-sin2x)+1=sin 2x+cos 2x+1
=2sin+1.
(1)函数f(x)的最小正周期为=π.
(2)∵-1≤sin≤1,∴-1≤2sin+1≤3.
∴当2x+=+2kπ,k∈Z,即x=+kπ,k∈Z时,f(x)取得最大值3;
当2x+=-+2kπ,k∈Z,即x=-+kπ,k∈Z时,f(x)取得最小值-1.
(3)由-+2kπ≤2x+≤+2kπ,k∈Z,得-+kπ≤x≤+kπ,k∈Z.
∴函数f(x)的单调递增区间为 (k∈Z). 第一步 化简:三角函数式的化简,一般化成y=Asin(ωx+φ)+h的形式,即化为“一角、一次、一函数”的形式.
第二步 整体代换:将ωx+φ看作一个整体,利用y=sin x,y=cos x的性质确定条件.
第三步 求解:利用ωx+φ的范围求条件解得函数y=Asin(ωx+φ)+h的性质,写出结果.
第四步 反思:反思回顾,查看关键点,易错点,对结果进行估算,检查规范性. (2014·福建)已知函数f(x)=cos x(sin x+cos x)-.
(1)若0<α<,且sin α=,求f(α)的值;
(2)求函数f(x)的最小正周期及单调递增区间.
解 方法一 (1)因为0<α<,sin α=,
所以cos α=.
所以f(α)=×(+)-=.
(2)因为f(x)=sin xcos x+cos2x-
=sin 2x+-
=sin 2x+cos 2x
=sin(2x+),
所以T==π.
由2kπ-≤2x+≤2kπ+,k∈Z,得
kπ-≤x≤kπ+,k∈Z.
所以f(x)的单调递增区间为[kπ-,kπ+],k∈Z.
方法二 f(x)=sin xcos x+cos2x-
=sin 2x+-
=sin 2x+cos 2x
=sin(2x+).
(1)因为0<α<,sin α=,所以α=,
从而f(α)=sin(2α+)=sin=.
(2)T==π.
由2kπ-≤2x+≤2kπ+,k∈Z,得
kπ-≤x≤kπ+,k∈Z.
所以f(x)的单调递增区间为[kπ-,kπ+],k∈Z.
模板2 解三角形问题
在△ABC中,若acos2+ccos2=b.
(1)求证:a,b,c成等差数列;
(2)求角B的取值范围.
审题路线图 (1)―→―→
(2)―→―→
规 范 解 答 示 例 构 建 答 题 模 板 (1)证明 因为acos2+ccos2=a·+c·=b,
所以a+c+(acos C+ccos A)=3b,
故a+c+=3b,
整理,得a+c=2b,故a,b,c成等差数列.
(2)解 cos B==
=≥=,
因为0c,已知·=2,cos B=,b=3.求:
(1)a和c的值;
(2)cos(B-C)的值.
解 (1)由·=2得c·acos B=2.
又cos B=,所以ac=6.
由余弦定理,得a2+c2=b2+2accos B.
又b=3,所以a2+c2=9+2×6×=13.
解得或
因为a>c,所以a=3,c=2.
(2)在△ABC中,
sin B== =,
由正弦定理,
得sin C=sin B=×=.
因为a=b>c,
所以C为锐角,
因此cos C== =.
于是cos(B-C)=cos Bcos C+sin Bsin C
=×+×=.
模板3 数列的通项、求和问题
(2014·江西)已知首项都是1的两个数列{an},{bn}(bn≠0,n∈N*)满足anbn+1-an+1bn+2bn+1bn=0.
(1)令cn=,求数列{an}的通项公式;
(2)若bn=3n-1,求数列{an}的前n项和Sn.
审题路线图 (1)→→→
(2)→
规 范 解 答 示 例 构 建 答 题 模 板 解 (1)因为anbn+1-an+1bn+2bn+1bn=0(bn≠0,n∈N*),
所以-=2,即cn+1-cn=2,
所以数列{cn}是以首项c1=1,公差d=2的等差数列,故cn=2n-1.
(2)由bn=3n-1知an=cnbn=(2n-1)3n-1,
于是数列{an}的前n项和Sn=1·30+3·31+5·32+…+(2n-1)·3n-1,
3Sn=1·31+3·32+…+(2n-3)·3n-1+(2n-1)·3n,
相减得-2Sn=1+2·(31+32+…+3n-1)-(2n-1)·3n=-2-(2n-2)3n,
所以Sn=(n-1)3n+1. 第一步 找递推:根据已知条件确定数列相邻两项之间的关系,即找数列的递推公式.
第二步 求通项:根据数列递推公式转化为等差或等比数列求通项公式,或利用累加法或累乘法求通项公式.
第三步 定方法:根据数列表达式的结构特征确定求和方法(如公式法、裂项相消法、错位相减法、分组法等).
第四步 写步骤:规范写出求和步骤.
第五步 再反思:反思回顾,查看关键点、易错点及解题规范. 已知点是函数f(x)=ax (a>0,且a≠1)的图象上的一点.等比数列{an}的前n项和为f(n)-c.数列{bn} (bn>0)的首项为c,且前n项和Sn满足Sn-Sn-1=+ (n≥2).
(1)求数列{an}和{bn}的通项公式;
(2)若数列的前n项和为Tn,问满足Tn>的最小正整数n是多少?
解 (1)∵f(1)=a=,∴f(x)=x.
由题意知,a1=f(1)-c=-c,
a2=[f(2)-c]-[f(1)-c]=-,
a3=[f(3)-c]-[f(2)-c]=-.
又数列{an}是等比数列,
∴a1===-=-c,
∴c=1.又公比q==,
∴an=-·n-1=-2·n (n∈N*).
∵Sn-Sn-1=(-)(+)
=+ (n≥2).
又bn>0,>0,∴-=1.
∴数列{}构成一个首项为1、公差为1的等差数列,
=1+(n-1)×1=n,即Sn=n2.
当n≥2时,bn=Sn-Sn-1=n2-(n-1)2=2n-1,
当n=1时,b1=1也适合此通项公式.
∴bn=2n-1 (n∈N*).
(2)Tn=+++…+
=+++…+
=×+×+×+…+×=×=.
由Tn=>,得n>,
∴满足Tn>的最小正整数n的值为101.
16-17学年高考数学答题技巧精选:常见的三种题型分享到这里,更多内容请关注高考数学答题技巧栏目。
【高考数学答题的三种题型】相关文章:
高考语文答题技巧:常见题型及答题模式05-09
高考物理各题型答题技巧05-10
高考语文各题型答题策略05-11
高考英语各题型的答题方法总结03-31
高考物理复习常见题型及答题技巧05-09
高考英语不同题型的答题技巧05-09
高考物理常见题型及其答题技巧05-09
高考物理复习:各题型答题技巧05-09
高考语文试卷各题型答题技巧05-05