- 相关推荐
四条捷径助你高考数学拿高分
高分数学捷径之一 少抄书 多翻译
文科数学的一大特色,就在于你可以通过有效的总结来代替无尽的习题。总结并不代表一味地抄公式抄概念,而应该用自己的语言和做题经验归纳出针对自身的解题技巧,这也就是我所谓的“翻译”。事实上,高三一年我花在总结上的工夫与做题相比有过之而无不及。从总结中萃取出的一本针对性极强的“翻译”小册子最终成为我数学攻坚的不二法宝。
高分数学捷径之二 少题海 多精题
“偷懒”的第一要任就在于减少复习的负荷量。数学最大的负荷是永无止境的题海。开学伊始,我便整理出一个大体的概念框架,并利用已有的做题经验对应框架进行知识点筛选,删除要求低的和已掌握的,突出重点和难点。这样在第一轮复习大家都埋头做题之时,我便早早地跳出了题海。省下时间只是手段,把精力花在研究“精题”上才是目的。我最大限度地利用了两大类“精题”:一类是涵盖了多项考点的“母题”,一类是同一题型中频率较高的“错题”。经验表明,对这两类题的反复研究和提炼大大提升了我学习数学的效率,为短期内成绩攀升打下坚实基础。
高分数学捷径之三 少粗心 多自信
粗心大意是大家在数学学习中难以绕过的一大障碍,然而粗心只是表象,追本溯源仍是不够熟练。不熟练并不意味一定要用题海来补救,惯于“偷懒”的我选择了用“翻译”来解决问题。审题不细的现象背后,或许是忘了分母不能为零,或许是记不清反三角函数的定义域。总之,导致粗心的原因无非几类,稍作总结便可悉数在握。心态的调整亦无需花费额外的精力。我所采取的措施是在临考一个月时找来近三年的高考试题,在规定的时间内细做一遍,并将答案写在卷上。抄答案的过程有利于对格式和细节进行查缺补漏。由于大多数的试题都在一轮轮复习中零星地遇到过,因而三套试卷整体感觉偏易,从而可以达到降低高考恐惧感,增强自信心的目的。
高分数学捷径之四 少动手 多动脑
高三的任务很重,文科每天的作业量足以把手写到抽筋。为了“偷懒”,我在动笔做题之前总先浏览一遍题干,遇到会做的题绝不浪费笔墨,遇到相同类型的题也只综合起来做个思路比较即可(当然前提是计算和格式能过关)。这个习惯不仅为我省去了大量无意义的劳动,更让我获得了从更高层次上审视题目的机会,从而加强了对许多考点的纵深理解。数学是文科制胜的关键,捷径是数学制胜的法宝。我的“四少四多捷径法”的核心就在于极强的自我针对性。只要找对路,你的高三旅程一定能迎来真正的“鸟语花香”。
以上就是为大家提供的“高中数学学习方法:四条捷径助你高考数学拿高分”希望能对考生产生帮助,更多资料请咨询中考频道。
高中数学学习方法之解题技巧
一、精做题
做题不是做得越多越好,而是做得越精越好。怎样才算“精”呢?学会“解剖麻雀”。充分理解题意,注意分析题型,深化对题中每个条件的认识,看看与哪些数学基础知识相联系,做完题,还要针对自己做错的题,分析自己当时想法的产生及错因的由来,要求用口语化的语言真实地叙述自己的做题经过和感想,以便挖掘出一些好的数学思维方法;一题多解,一题多变,多元归一。
二、做难题
取得黑龙江省高考文史类第三名好成绩的李宏霞同学,认为坚持做难题,做大题才是制胜的法宝。她说,数学中的基础题因然很重要,但高分的关键则是综合性强、难度大的最后两三道大题,即所谓“拉分题”。因此,她在复习时坚持有规律地做这类题目。由于题目难度高,所以每次做的题量不要太大,一次做四五道即可,同时,要注意选择的题目要有代表性、要全面,同一题型的题选二三道即可,要注意方法的积累和运用。
三、天天做题
熟练解题一定要有量的积累。天天做题就是保证做题的数量的最好方法。同学们可以制定一个计划,每天要求自己做五道题目,或十道题目,根据自己的情况确定,如此坚持下去,做题越做越快,并且培养起相当的自信心。
华师一附中名师 数学抓3个基础要点
数学 抬起头做题,别紧张
备考定位
现阶段,学生已基本掌握中学数学知识体系,具备一定解题经验,对各种数学基本方法、思想都有一定认识。后期复习,应以深化理解基础知识,完善知识结构,并加强综合训练为主,提高数学思想,熟练掌握各类数学方法。
复习建议
1.抓基础有三个要点 高中历史
(1)保证综合训练题量,限时限量完成套题训练,在快速、准确、规范上下功夫。
(2)“抬起头来做题”,从清晰解题思路、优化解题步骤、寻找最佳切入点方面,做好解题的归纳小结。
(3)及时改错、补漏、拾遗。
2.从能力要求的角度跟进提升
(1)熟练三种数学语言(数学文字语言,数学符号语言,数学图形语言)的相互转换。
(2)强化训练细致严密的审题习惯。
(3)加强训练快捷灵活的解题切入。
(4)要在确定合理运算方向,选择合理运算途径,优化组合公式法则,形成灵活善变的解题策略方面下功夫。
(5)对实际应用、开放探索问题,解选择题、填空题等策略问题也应适度训练。
3.做好心理调节
除数学能力外,过硬的心理素质也是影响考试成败的主要因素。考生要找准自己的位置,确立合理的参照目标,始终看到自己的成绩和进步,形成积极的心理效应,以提高后期复习效率和应考能力。同时要明确,试卷必有难题,作答时要充满自信,明确试卷的难易对每个人都公平。
2016高考数学复习要处理好哪七大关系
关注立体几何的变化
传统教材与新课程标准在处理立体几何上有着明显的区别,所以如何进行立体几何的备考争议最多、迷茫最多,而这些焦点集中反映在点、线、面的位置关系上。首先我们要注意新旧教材的差异:
(1)传统教材侧重于空间点、线、面的关系以及有关的定理公理和相应的推理证明。
新课程标准将上述内容进行淡化,对的要求变为“直观感知、操作确认、思辨论证”,“能运用已获得的结论证明一些空间位置关系的简单命题”。也就是说,新课程标准降低了推理与证明,将简单论证与数值计算有机结合在一起是考查的重点。
(2)文科在必修2习了空间直角坐标系,这可以认为是更倾向于立体几何的数值运算,而且是采用代数(建立空间直角坐标系)计算一些几何量(点到点的距离)。
在2011年的立体几何备考中应该注意以下几点:
①空间的点、线、面的位置关系要把握好尺度,重点在基本的线面平行与垂直上,不应该向量办法。
②立体几何也有创新,广东2007年将立体几何与函数结合在一起、2008年体现三角函数在立体几何有关数值运算中的作用都是很好的尝试。
要处理好的几个关系
1.基础与提高的关系
数学复习时,起点要适当降低,以符合自己的实际水平为主。回归基础,找到自己的不足,制订进一步训练的计划。对点进行拾遗补缺也是一种提高。提倡准备“错题本”,将每次训练的错误登记在册,时常提醒自己。回归教材复习的时候,要对照课本目录(目录)回忆和梳理,在自己头脑中应形成明晰的知识体系。对基本方法和技巧不能回忆出的,要及时补上。把重点放在掌握例题涵盖的知识以及解题方法上,选择一些针对性强的题目进行强化训练。
2.全面复习与重点复习的关系
在全面复习的基础上,针对自己的特点多做一些重点练习。首先是自己的弱点、软肋,其次是高考的主干内容,最好设立专题进行专项复习,可以把所做的中的相关问题集中起来进行复习和整理,从中归纳和总结出基本的题型和方法。主干内容是:函数、数列、三角、不等式、立体几何、解析几何以及新增加的内容。
3.做题数量和质量的关系
在最后阶段要精选一些题目来做,量不在多,题目要典型,要结合我们前面的分析来选择题目,要有针对性。也要针对自己的薄弱环节,不做偏题、怪题。难题未必是好题,简单题目也可能是经典。
高考重在考查数学中普遍运用的常规方法,侧重通性通法,适当淡化技巧。当然不是说不要技巧,如数列求和的一些技巧性很强的方法——“裂项法、错位相减法”就应该熟练掌握。此外,有能力的同学也可以探索一些数学竞赛中经常使用的方法,广东最近几年的压轴往往与竞赛数学有一定的联系。
4.练习与反思的关系
在做完一份练习或讲解完一道题目后,反思尤为重要。切不可因追求过多而忽视之后的反思。做完题目后,一要反思知识提取是否熟练:本题涉及哪些重要的知识?题目特殊在哪里?二要反思方法是否熟练:用到哪些思想方法、解题思路如何发现的?解题的关键在哪里?是否遇见过类似的题目?今后遇见该类问题有无信心去解决?三要反思存在的弱点:为什么没有解答出?自己存在哪些错误?为什么会出现这样的错误?等等。
此外,不要为解题而解题,要学会举一反三,不仅会做,而且解法还要简单。由一题带动多题,要从不同角度思考问题,不满足已有的解法 高中数学,从其他角度考虑,这种做法对解决难题尤其有好处。
5.难题和中档题目的关系
高考做题不怕不会,就怕做不对。其实,你只要把自己会做的题目基本都做对了,最大地减少了失误,就已经了,复习的时候要在解题的正确性和速度上下工夫。
6.看题与动笔的关系
每隔一段时间都要把自己最近做过的题目进行消化和整理,这是由量变到质变的过程,要分门别类进行整理。但是不能只看题目和解答,这点尤其重要。记住,数学是看不会的,必须将思考与动笔相结合,才可以保持良好的竞技状态。
七、调整心态、掌握应试技巧
数学高考不仅是数学知识的较量,也是考生素质和技巧的比拼。过程要放得开,挺得住。精神要集中,心态要平和,要学会自我暗示。现在高考也是对个性品质的考验,素质好的,就能取得好的成绩。
是紧张的,同时也是收获的前夜。祝愿各位在2011年的高考中取得辉煌成绩。
高中数学排列与组合部分知识点总结
排列组合与二项式定理点
1.计数原理知识点
①乘法原理:N=n1·n2·n3·…nM (分步) ②加法原理:N=n1+n2+n3+…+nM (分类)
2. 排列(有序)与组合(无序)
Anm=n(n-1)(n-2)(n-3)…(n-m+1)=n!/(n-m)! Ann =n!
Cnm = n!/(n-m)!m!
Cnm= Cnn-m Cnm+Cnm+1= Cn+1m+1 kk!=(k+1)!-k!
3.排列组合混合题的解题原则:先选后排,先分再排
排列组合题的主要解题:优先法:以元素为主,应先满足特殊元素的要求,再考虑其他元素. 以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置.
捆绑法(集团元素法,把某些必须在一起的元素视为一个整体考虑)
插空法(解决相间问题) 间接法和去杂法等等
在求解排列与组合应用问题时,应注意:
(1)把具体问题转化或归结为排列或组合问题;
(2)通过分析确定运用分类计数原理还是分步计数原理;
(3)分析题目条件,避免“选取”时重复和遗漏;
(4)列出式子计算和作答.
经常运用的思想是:
①分类讨论思想;②转化思想;③对称思想.
4.二项式定理知识点:
①(a+b)n=Cn0ax+Cn1an-1b1+ Cn2an-2b2+ Cn3an-3b3+…+ Cnran-rbr+…+ Cn n-1abn-1+ Cnnbn
特别地:(1+x)n=1+Cn1x+Cn2x2+…+Cnrxr+…+Cnnxn
②主要性质和主要结论:对称性Cnm=Cnn-m
最大二项式系数在中间。(要注意n为奇数还是偶数,答案是中间一项还是中间两项)
所有二项式系数的和:Cn0+Cn1+Cn2+ Cn3+ Cn4+…+Cnr+…+Cnn=2n
奇数项二项式系数的和=偶数项而是系数的和
Cn0+Cn2+Cn4+ Cn6+ Cn8+…=Cn1+Cn3+Cn5+ Cn7+ Cn9+…=2n -1
③通项为第r+1项: Tr+1= Cnran-rbr 作用:处理与指定项、特定项、常数项、有理项等有关问题。
5.二项式定理的应用:解决有关近似计算、整除问题,运用二项展开式定理并且结合放缩法证明与指数有关的不等式。
6.注意二项式系数与项的系数(字母项的系数,指定项的系数等,指运算结果的系数)的区别,在求某几项的系数的和时注意赋值法的应用。
数学高考复习经验:如何备战高考
【摘要】鉴于大家对十分关注,小编在此为大家整理了此文“数学高考复习经验:如何备战高考”,供大家参考!
本文题目:数学高考复习经验:如何备战高考
关于数学的学习,我觉得“掌握节奏”是很重要的,可能大家以前从没听到过这样的说法,这其实是我高中三年学习感触最深的事情。
我说的“节奏”,就是一种学数学或者是任何一门学科的状态。如果你平时玩的时间比较多,当要月考了,说要拼一下,每天凌晨睡,专攻数学,我觉得这样的节奏就不好,正常的生理混乱不说,尤其需要清晰的数学概念也会在一次次的突击中慢慢变得混乱不堪。
高三的数学学习其实说容易也容易,第一轮复习的时候最要紧的就是跟紧老师的脚步,把课上每一道题都弄懂弄通,把相关的知识在有空的时候反复想想。
之后进入做题阶段后,很多同学都能做到认真做题,认真听讲订正,但是最后内化的那块却遗漏了。“内化”是什么?简单地说就是南洋模范中学曾经的教育理念:考后一百分。这张卷子做完了,订正完了,再给你做一遍你能保证全对吗?遇到感觉很好的题,我更会自己做在一本本子上,在考试前,什么都不看,就看这个。
高三的数学学习,我没有遇到大的阻碍,几次考试成绩不佳我也不担心,因为我的方法和节奏完全没有问题。我有两条原则,那就是卷子再多也绝不抄题,讲过的题回家必复习。最后证明这些做法还是非常有效的。
我还想谈点关于政治学习的建议。相对于练,个人从题目和信息中的“悟”就比较重要了。在这里介绍两个我高三保持的习惯。一是电视常年锁定央视新闻。在央视新闻改版以后,我欣喜地看到其中大幅增加了对于新闻的深度报道和评论,每天收看的话,面对时政题时,你都了解前因后果。二是每周一份《南方周末》,最值得推荐的是其评论版面,从一些社会热点问题中试图学习评论者发现问题的新奇角度和犀利眼光,以及在论证时的思辨思想。
政治学习离不开背。但是我觉这种背不是苦背,只要像翻单词书那样保证每天认真翻一翻,时间久了,自然会觉得这些知识点都在你的脑海中。说到底还是两个字:坚持。
2016年全国新课标高考考试大纲:理科数学
Ⅰ 性质
普通高等学校招生全国统一考试是合格的毕业生和具有同等学力的考生参加的选拔性考试.高等学校根据考生成绩,按已确定的招生计划,德、智、体全面衡量 高一,择优录取.因此,应具有较高的信度、效度,必要的区分度和适当的难度.
Ⅱ 考试内容
根据普通高等学校对新生文化素质的要求,依据中华人民共和国部2003年颁布的《普通高中课程方案(实验)》和《普通课程标准(实验)》的必修课程、选修课程系列2和系列4的内容,确定理工类高考科考试内容.
数学科的考试,按照“考查基础的同时,注重考查”的原则,确立以立意命题的指导思想,将、和素质融为一体,全面检测考生的数学素养.
数学科考试,要发挥数学作为主要基础学科的作用,要考查考生对的基础知识、基本技能的掌握程度,要考查对数学思想和数学本质的理解水平,要考查进入高等学校继续的潜能.
一、考核目标与要求
1.知识要求
知识是指《普通高中数学课程标准(实验)》(以下简称《课程标准》)中所规定的必修课程、选修课程系列2和系列4中的数学概念、性质、法则、公式、公理、定理以及由其内容反映的数学思想方法,还包括按照一定程序与步骤进行运算,处理数据、绘制图表等基本技能.
各部分知识整体要求及其定位参照《课程标准》相应模块的有关说明.
对知识的要求依次是了解、理解、掌握三个层次.
(1)了解:要求对所列知识的含义有初步的、感性的认识,知道这一知识内容是什么,按照一定的程序和步骤照样模仿,并能(或会)在有关的问题中识别和认识它.
这一层次所涉及的主要行为动词有:了解,知道、识别,模仿,会求、会解等.
(2)理解:要求对所列知识内容有较深刻的理性认识,知道知识间的逻辑关系,能够对所列知识作正确的描述说明并用数学语言表达,能够利用所学的知识内容对有关问题作比较、判别、讨论,具备利用所学知识解决简单问题的能力.
这一层次所涉及的主要行为动词有:描述,说明,表达,推测、,比较、判别,初步应用等.
(3)掌握:要求能够对所列的知识内容能够推导证明,利用所学知识对问题能够进行分析、研究、讨论,并且加以解决.
这一层次所涉及的主要行为动词有:掌握、导出、分析,推导、证明,研究、讨论、运用、解决问题等.
2.能力要求
能力是指空间想像能力、抽象概括能力、推理论证能力、运算求解能力、数据处理能力以及应用意识和创新意识.
(1)空间想像能力:能根据条件作出正确的图形,根据图形想像出直观形象;能正确地分析出图形中基本元素及其相互关系;能对图形进行分解、组合;会运用图形与图表等手段形象地揭示问题的本质.
空间想像能力是对空间形式的观察、分析、抽象的能力.主要表现为识图、画图和对图形的想像能力.识图是指观察研究所给图形中几何元素之间的相互关系;画图是指将文字语言和符号语言转化为图形语言以及对图形添加辅助图形或对图形进行各种变换;对图形的想像主要包括有图想图和无图想图两种,是空间想像能力高层次的标志.
(2)抽象概括能力:抽象是指舍弃事物非本质的属性,揭示其本质的属性;概括是指把仅仅属于某一类对象的共同属性区分出来的过程.抽象和概括是相互联系的,没有抽象就不可能有概括,而概括必须在抽象的基础上得出某一观点或作出某项结论.
抽象概括能力就是从具体的、生动的实例,在抽象概括的过程中,发现研究对象的本质;从给定的大量信息材料中,概括出一些结论,并能应用于解决问题或作出新的判断.
(3)推理论证能力:推理是思维的基本形式之一,它由前提和结论两部分组成,论证是由已有的正确的前提到被论证的结论正确的一连串的推理过程.推理既包括演绎推理,也包括合情推理.论证方法既包括按形式划分的演绎法和归纳法,也包括按思考方法划分的直接证法和间接证法.一般运用合情推理进行猜想,再运用演绎推理进行证明.
中学数学的推理论证能力是根据已知的事实和已获得的正确数学命题来论证某一数学命题真实性初步的推理能力.
(4)运算求解能力:会根据法则、公式进行正确运算、变形和数据处理,能根据问题的条件,寻找与设计合理、简捷的运算途径;能根据要求对数据进行估计和近似计算.
运算求解能力是和运算技能的结合.运算包括对数字的计算、估值和近似计算,对式子的组合变形与分解变形,对几何图形各几何量的计算求解等.运算能力包括分析运算条件、探究运算方向、选择运算公式、确定运算程序等一系列过程中的,也包括在实施运算过程中遇到障碍而调整运算的能力.
(5)数据处理能力:会收集数据、整理数据、分析数据,能从大量数据中抽取对研究问题有用的信息,并作出判断.
数据处理能力主要依据统计或统计案例中的方法对数据进行整理、分析,并解决给定的实际问题.
(6)应用意识:能综合应用所学数学知识、思想和方法解决问题,包括解决在相关学科、生产、生活中简单的数学问题;能理解对问题陈述的材料,并对所提供的信息进行归纳、整理和分类,将实际问题抽象为数学问题,建立数学模型;应用相关的数学方法解决问题并加以验证,并能用数学语言正确地表达和说明.应用的主要过程是依据现实的生活背景,提炼相关的数量关系,将现实问题转化为数学问题,构造数学模型,并加以解决.
(7)创新意识:能发现问题、提出问题,综合与灵活地应用所学的数学知识、思想方法,选择有效的方法和手段分析信息,进行独立的思考、探索和研究,提出解决问题的思路,创造性地解决问题.
创新意识是理性思维的高层次表现.对数学问题的“观察、猜测、抽象、概括、证明”,是发现问题和解决问题的重要途径,对数学知识的迁移、组合、融会的程度越高,显示出的创新意识也就越强.
3.个性品质要求
个性品质是指考生个体的情感、态度和价值观.要求考生具有一定的数学视野,认识数学的科学价值和人文价值,崇尚数学的理性精神,形成审慎的思维习惯,体会数学的美学意义.
要求考生克服紧张情绪,以平和的心态参加考试,合理支配考试时间,以实事求是的科学态度解答,树立战胜困难的信心,体现锲而不舍的精神.
4.考查要求
数学学科的系统性和严密性决定了数学知识之间深刻的内在联系,包括各部分知识的纵向联系和横向联系,要善于从本质上抓住这些联系,进而通过分类、梳理、综合,构建数学的框架结构.
(1)对数学基础知识的考查,既要全面又要突出重点,对于支撑学科知识体系的重点内容,要占有较大的比例,构成数学试卷的主体,注重学科的内在联系和知识的综合性,不刻意追求知识的覆盖面.从学科的整体高度和思维价值的高度考虑问题,在知识网络交汇点设计试题,使对数学基础知识的考查达到必要的深度.
(2)对数学思想方法的考查是对数学知识在更高层次上的抽象和概括的考查,考查时必须要与数学知识相结合,通过数学知识的考查,反映考生对数学思想方法的掌握程度.
(3)对数学能力的考查,强调“以能力立意”,就是以数学知识为载体,从问题入手,把握学科的整体意义,用统一的数学观点组织材料,侧重体现对知识的理解和应用,尤其是综合和灵活的应用,以此来检测考生将知识迁移到不同情境中去的能力,从而检测出考生个体理性思维的广度和深度,以及进一步学习的潜能.
对能力的考查要全面考查能力,强调综合性、应用性,并要切合实际。对推理论证能力和抽象概括能力的考查贯穿于全卷,是考查的重点,强调其科学性、严谨性、抽象性。对空间想象能力的考查,主要体现在对文字语言、符号语言及图形语言的互相转化上;对运算求解能力的考查主要是算法和推理的考查,考查以代数运算为主;对数据处理能力的考查主要是运用概率统计的基本方法和思想解决实际问题的能力。
(4)对应用意识的考查主要采用解决应用问题的形式.命题时要坚持“贴近生活,背景公平,控制难度”的原则,试题设计要切合中学数学教学的实际和考生的年龄特点,并结合实践经验,使数学应用问题的难度符合考生的水平.
(5)对创新意识的考查是对高层次理性思维的考查.在考试中创设新颖的问题情境,构造有一定深度和广度的数学问题时,要注重问题的多样化,体现思维的发散性;精心设计考查数学主体内容、体现数学素质的试题;也要有反映数、形运动变化的试题以及研究型、探索型、开放型等类型的试题.
数学科的命题,在考查基础知识的基础上,注重对数学思想方法的考查,注重对数学能力的考查,展现数学的科学价值和人文价值,同时兼顾试题的基础性、综合性和现实性,重视试题间的层次性,合理调控综合程度,坚持多角度、多层次的考查,努力实现全面考查综合数学素养的要求.
【捷径助你高考数学拿高分】相关文章:
高考数学拿高分的复习技巧05-09
高考语文如何拿高分05-11
高考语文答题:怎么拿高分05-12
高考地理拿高分诀窍总结05-04
高考物理怎么才能拿高分05-05
高考语文作文该怎么拿高分05-08
高考政治主观题怎样拿高分05-07
高考语文各题型备考秘籍 高分怎么拿?05-09
高考地理怎么拿高分:抓住主干认真审题05-09